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The contract structure

Consider a GLWB VA contract that includes an initial accumulation phase and an LTC
option.

▶ single-premium policy
0 time of contract inception
x policyholder's age at the inception
P single premium entirely invested in a well-diversi�ed fund.

▶ right to make periodical withdrawals at some speci�ed dates for the whole life, even
if the account value is reduced to zero, and to receive LTC bene�ts in the event of
disability.

▶ additional purchases of funds, up to a constant fraction 0 < π < 1 of the bene�t
base are allowed in the accumulation phase as well as dynamic withdrawals in the
income phase, and complete surrender rights throughout the whole life of the
contract.

▶ upon the policyholder death the remaining policy account is paid to the bene�ciary
as a death bene�t.



The contract structure

St: market price at time t of each unit of the fund, that drives the return on the
investment portfolio built up with the policyholder's payment.

Wt: value at time t of such portfolio, called policy account

φ: insurance fees to �nance the cost of the GLWB rider + LTC option by periodical
proportional deductions from Wt

At: the bene�t base At, which is initially set equal to the single premium.

We assume that:
1) withdrawals are allowed on a predetermined set of equidistant dates and we take the
distance between two consecutive dates as unit of measurement of time;
2) the death bene�t is paid to the bene�ciary on the next upcoming withdrawal date.



The contract structure

Let τ be the time of death of the policyholder, so that withdrawals are allowed only at
times j = 1, 2, . . . , provided that τ > j. Moreover, let λ be the time of permanent
disability with the convention that if λ ≥ τ the policyholder never becomes disabled. The
variable

zj = 1{λ>j} =

{
1 if λ > j

0 if λ ≤ j
,

which de�nes the healthy status of the policyholder at time j.
According to the policyholder's health status at time j = 1, . . . , T, T + 1, . . ., we consider
a di�erent withdrawal rate: let g

(i)
j = g(i) be the withdrawal rate of the policyholder

which is disabled (i) at time j, while let

g
(h)
j =

{
0 if j ≤ T

g(h) if j > T
,

be the withdrawal rate of the healthy (h) policyholder, with g(i) ̸= g(h).
The guaranteed amount that can be withdrawn at time j = 1, · · · , T is equal to g(i)Aj ,
while for j = T + 1, . . ., it is equal to g(m)Aj , m = h, i



The contract structure

The return on the reference fund over the interval [j − 1, j] is

Rj = (Sj/Sj−1)− 1, j = 1, 2, . . . .

� yj the actual withdrawal made by the policyholder at time j. It is admissible if it
belongs to the set of admissible withdrawal strategies Y = (Yj)j∈N+ where

Yj = Y
(h)
j 1{λ>j} + Y

(i)
j 1{λ≤j},

Y
(m)
j =


[−πAj ,Wj ], m = h; j = 1, . . . , T

[−πAj ,max{g(i)Aj ,Wj}], m = i; j = 1, . . . , T

[0,max{g(m)Aj ,Wj}], m = h, i; j = T + 1, . . .

. (1)

� If yj = 0 then Aj is increased according to the roll-up rate b
(m)
j ∈ (0, 1), m = h, i, and

according to any possible additional purchase allowed in the accumulation phase only;
while, if yj > g(m)Aj , it is proportionally reduced according to the so called `pro-rata'
adjustment rule.



The contract structure

To describe the evolution of the bene�t base we introduce the following function

a
(m)
j+1(Wj , Aj , yj) =


Aj

(
1 + b

(m)
j

)
− yj if yj ≤ 0,

Aj if 0 < yj ≤ g(m)Aj ,

Aj
Wj − yj

Wj − g
(m)
j Aj

if g
(m)
j Aj < yj ≤ Wj

,

m = h, i, j = 1, 2, . . . , from which we get the evolution of the bene�t base:

Aj+1 = a
(h)
j+1(yj ,Wj , Aj)1{λ>j} + a

(i)
j+1(yj ,Wj , Aj)1{λ≤j},

with A1 = P . If yj > g
(m)
j Aj , there is also a proportional penalization on the surplus

according to a penalty rate k
(m)
j ∈ [0, 1).1 Therefore, the net amount (cash-�ow) received

at time j is given by

C
(m)
j (yj , Aj) = yj − k

(m)
j max{yj − g

(m)
j Aj , 0}, m = h, i; j = 1, 2, . . . ; yj ∈ Yj .

1
Note that this penalization applies also in the case there is no guaranteed amount, namely in

the accumulation phase for the healthy policyholder if she withdraws something bigger than zero.



The contract structure

The policy account value evolves according to the following equation:

Wj+1 = w(Wj , Rj+1, yj) = max{Wj − yj , 0}(1 +Rj+1)(1− φ), j = 0, 1, . . . ,

where φ ∈ (0, 1), W0 = P and y0 = 0.

Note that 0 is an absorbent barrier for W because, once it becomes null, it remains so for
ever. The contract, however, continues while At > 0 (and the insured is still alive).
Finally, in case of death in the time interval (j − 1, j], the death bene�t, paid at time j, is

Bj = Wj , j − 1 < τ ≤ j , j = 1, 2, . . . .

In case of surrender at time j, i.e., when yj = Wj > g
(m)
j Aj , the contract is

automatically closed for all t > j, hence no further withdrawals are admitted, nor a death
bene�t will be paid.



The valuation problem

▶ We assume to act in a frictionless and arbitrage-free market and let (Ω,F , Q) be a
complete probability space equipped with a complete and right continuous �ltration
F = (Ft)t≥0, where Q is the risk-neutral probability measure selected by the insurer
among the in�nitely many equivalent martingale measures existing in incomplete
markets.

▶ independence between biometric and �nancial risks, as well as deterministic
transition and death probabilities.

▶ Given r the instantaneous interest rate which we assume to be deterministic and
constant, we model the reference portfolio value St as an exponential Lévy process:

St = S0e
(r+d)t+Xt ,

where (Xt)t≥0, with X0 = 0, is a (F, Q)-Lévy process, and d represents an
adjustment so that St e

−rt is a (F, Q)-martingale.



The valuation problem

Let
ph,hj = Q(τ > j + 1, zj+1 = 1 | zj = 1, τ > j),

ph,ij = Q(τ > j + 1, zj+1 = 0 | zj = 1, τ > j),
j = 0, 1, . . . ,

be the one-year transition probabilities which represent, respectively, the probability to be
alive and healthy at age x+ j + 1, and to be alive but disabled at age x+ j + 1, both
conditional on survival and to being healthy at age x+ j. Moreover, let

pi,ij = Q(τ > j + 1, zj+1 = 0 | zj = 0, τ > j), j = 1, 2, . . . ,

be the probability to be alive and disabled at age x+ j + 1 conditional on survival and to
being disabled at age x+ j. Note that pi,hj = 0 for the hypothesis of permanent disability.
Concerning the death probabilities, let

qhj = Q(τ ≤ j + 1 | τ > j, zj = 1), j = 0, 1, . . . ,

qij = Q(τ ≤ j + 1 | τ > j, zj = 0), j = 1, 2, . . . ,

be the probabilities of dying before age x+ j + 1 conditional on survival and to being
healthy or disabled, respectively, at age x+ j.



The valuation problem

The initial value of the GLWB variable annuity with the LTC option is the solution of the
following problem:

V0 = sup
y∈Y

EQ

[
n∑

j=1

e−rj
(
1{τ∧λ>j} C

(h)
j (yj , Aj) + 1{λ≤j<τ} C

(i)
j (yj , Aj) + 1{j−1<τ≤j}Wj

)

+ e−r(n+1)1{τ>n}Wn+1

]
,

where n = ω − x, with ω denoting the maximum attainable age2 for the policyholder,
beyond which her survival probability is zero.

▶ For simplicity, we assume the same maximum age ω for both healthy and disabled
policyholders.

2
Our unit of measurement of time is the common distance between two consecutive

withdrawal dates, so that also x and ω are expressed according to this measure.



Dynamic Programming

Let Vj(Wj , Aj , zj) be the contract value at time j (before the periodic withdrawal);
vj(Wj , Aj , zj) the contract value at the same time when the policyholder is alive.

Vj(Wj , Aj , zj) = 1{τ>j}vj(Wj , Aj , zj) V0 = V0(P, P, 1) = v0(P, P, 1).

We take n+ 1 as the starting point of our backward dynamic algorithm, and de�ne the
following terminal condition:

vn+1(Wn+1, An+1, zn+1) ≡ 0.

Then, we proceed backward and for j = n, n− 1, . . . , 1, we de�ne the Bellman recursive
equation of the problem as:

vj(Wj , Aj , zj) = sup
yj∈Yj

(
1{λ>j} C

(h)
j (yj , Aj) + 1{λ≤j} C

(i)
j (yj , Aj)

+ EQ
[
1{τ≤j+1}w(Wj , Rj+1, yj)e

−r|Wj , Aj , zj , τ > j
]

+ EQ
[
1{τ>j+1}vj+1

(
w(Wj , Rj+1, yj), a

(h)
j+1(Wj , Aj , yj)1{λ>j}

+ a
(i)
j+1(Wj , Aj , yj)1{λ≤j}, zj+1

)
e−r|Wj , Aj , zj , τ > j

])



Dynamic Programming

vj(Wj , Aj , zj) = sup
yj∈Yj

(
1{λ>j} C

(h)
j (yj , Aj) + 1{λ≤j} C

(i)
j (yj , Aj)

+ max{Wj − yj , 0}(1− φ)Q(τ ≤ j + 1 | zj , τ > j)

+ EQ
[
vj+1

(
w(Wj , Rj+1, yj), a

(h)
j+1(Wj , Aj , yj)1{λ>j} + a

(i)
j+1(Wj , Aj , yj)1{λ≤j}, 1

)
e−r

|Wj , Aj , zj

]
Q(τ > j + 1, zj+1 = 1 | zj , τ > j)

+ EQ
[
vj+1

(
w(Wj , Rj+1, yj), a

(h)
j+1(Wj , Aj , yj)1{λ>j} + a

(i)
j+1(Wj , Aj , yj)1{λ≤j}, 0

)
e−r

|Wj , Aj , zj

]
Q(τ > j + 1, zj+1 = 0 | zj , τ > j)

)

Finally, the initial contract value is:

v0(P, P, 1) = qh0P (1− φ)+EQ
[
v1(P (1 +R1)(1− φ), P, 1) e−r

]
ph,h0

+EQ
[
v1(P (1 +R1)(1− φ), P, 0) e−r

]
ph,i0 .



Bang Bang analysis

At each time step j = n, n− 1, . . . 1, the Bellman equation requires to solve:

▶ a real-valued optimization problem on Y
(m)
j (1) whose expression depends both on

the health status of the policyholder and the contract phase.

Since the computational e�ort could be substantial, a property that drastically reduces
this e�ort is the bang-bang condition which is satis�ed for our problem.

Proposition

The optimal withdrawal strategy is yj ∈ {−πAj , 0,Wj} for j = 1, . . . , T (i.e., in the
accumulation phase) if the policyholder is healthy, and yj ∈ {−πAj , 0, g

(i)Aj ,Wj} if
disabled. For j = T + 1, . . . n (i.e., in the income phase) it is yj ∈ {0, g(m)Aj ,Wj} for
m = h, i.

Proof: by backward induction, starting from the case j = n. Then, assuming the
proposition holds at step j + 1, for j = n− 1, . . . , T + 1, one proves that it holds for
j = T + 1 which serves as starting condition for the iterative step 2. Therefore, by
assuming the proposition holds for j = T, T − 1, . . . , 1, one gets that it holds for j = 1.



Bang Bang analysis

In the accumulation phase, if the PH is healthy:

▶ it may be convenient to purchase yj = −πAj , but never to purchase an amount yj
with −πAj < yj < 0, then the optimal strategy is yj = 0.

▶ it is possible to withdraw yj > 0 subject to the withdrawal penalty kjyj as well as to
a second penalization due to the reduction of the bene�t base according to the
pro-rata rule. Then it is convenient that yj = Wj .

For the disabled PH, the same arguments apply to yj = −πAj and yj = 0.

▶ It is never convenient to withdrawal 0 < yj < g(i)Aj as the policyholder loses the
roll-up incentive without taking full advantage of the guarantee.

▶ if Wj > g(i)Aj , it is possible to withdraw yj > g(i)Aj subject to the withdrawal
penalty kj(yj − g(i)Aj). Moreover, if g(i)Aj < yj < Wj , there is a second
penalization due to the pro-rata adjustment rule. Therefore, it would be more
convenient that yj = Wj .

In the income phase, we come to similar conclusions as above and thus the set of optimal
withdrawals for the healthy policyholder is {0, g(h)Aj ,Wj}, while for the disabled
policyholder is {0, g(i)Aj ,Wj}.



Numerical examples

▶ We �x P =100, annual withdrawals and an insured aged x = 50 at contract
inception, marking the beginning of the accumulation phase, which lasts 15 years.
Consequently, the insured is aged x = 65 when the income phase begins.

▶ We adopt the projected transition and death probabilities stemming from the study
of Baione et al. 2016 that exploits health-related data provided by INPS to �t a
three-state (healthy, disabled, dead), continuous time Markov model. As a result,
we take ω = 120, and we consider the cohort of the Italian population aged x = 50
in 2013, following that n = 70.

▶ VG model whose characteristic function is

Φt(u) = exp

(
− t

v
ln

(
1− iuµv +

1

2
σ2u2v

))
,

with µ ∈ R, σ, v > 0.

▶ σ = 0.2, v = 0.85, and µ = 0, which were calibrated using S&P 500 market data3

▶ r = 3.5% consistent with the term structure of risk-free interest rates in the U.S.
market for very long maturities.

3
Kirkby-Nguyen: Equity-linked guaranteed minimum death bene�ts with dollar cost averaging, IME 2021.



Numerical examples

The contract parameters in the basic case are:

Contract parameter Notation Value

Bonus rate b
(h)
j = b

(i)
j 5%

Penalty rate k
(h)
j = k

(i)
j 3%

Withdrawal rate (healthy) g(h) 3%

Withdrawal rate (disabled) g(i) = 2 g(h) 6%

Fee rate φ 2.34%

Withdrawal dates yearly

▶ Note that he fair fee rate for a male should be equal to 1.96% and the one for a
female should be equal to 2.72%. We have chosen a basic level for φ = 2.34% as
the average of these two values. This implies that the contract is overpriced (i.e.,
V0 < P ) for male policyholders while it is underpriced (i.e., V0 > P ) for female
policyholders.



Numerical examples
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Numerical examples
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Numerical examples
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Numerical examples
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Numerical examples

Table: Fair fee for di�erent roll-up rates b

Case b = 0.0425 (−15%) b = 0.0475 (−5%) b = 0.05 b = 0.0525 (+5%) b = 0.0575 (+15%)

Fair fee

Male 0.0143 (−27.04%) 0.0176 (−10.20%) 0.0196 0.0218 (+11.22%) 0.0270 (+37.75%)

Female 0.0197 (−27.57%) 0.0244 (−10.29%) 0.0272 0.0304 (+11.76%) 0.0382 (+40.44%)

Table: Fair fee for di�erent withdrawal rates g

Case g = 0.0255 (−15%) g = 0.0285 (−5%) g = 0.03 g = 0.0315 (+5%) g = 0.0345 (+15%)

Fair fee

Male 0.0123 (−37.24%) 0.0169(−13.77%) 0.0196 0.0226 (+15.30%) 0.0296 (+51.02%)

Female 0.0170 (−37.50%) 0.0234 (−13.97%) 0.0272 0.0315 (+15.80%) 0.0421 (+54.78%)
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