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Target of our paper

We propose an alternative methodology for assessing capital requirement for
idiosyncratic (diversifiable) demographic risk for the main traditional life
insurance contracts, where also the relevance of sums insured volatility is
put in evidence for risk evaluation.

The proposed formula can represent a possible undertaking-specific approach
(USP) in Solvency Il framework, also improving the factor-based formula

roposed in QIS2 2006 (then modified according to a scenario-approach in the
final Standard Formula using in practice a stress of BEL).

Numerical analyses are also carried out for some cohorts, to evaluate the
goodness of the proposed USP formula using as a benchmark a risk-theory
based Partial Internal Model, then confirming how it could be a suitable
alternative to Standard Formula or Simulation Models.




Cohort Approach

e We consider a cohort of contracts composed by lp policyholders at time 0 with
the same characteristics (except for the sums insured).

e We define the r.v. insured sums of the k policyholder at time ¢ as follows:

t—1

L
Sk,t = Sk,0 I I I .

T=0
where ]Ii’T is a Bernoulli r.v. that assumes value equal to one if the policyholder
survives from 7 to 7 + 1.

e Since the cohort is composed by policyholders with the same characteristics
(except for the sums insured), we assume that the survival of the policyholders
are conditionally independent. Furthermore, we define the sums insured of the

whole portfolio as follows: Number of mitial
Lo)— cohort’s policyholders
St = Skt

k=1




Cash-In and Cash-Out

e We consider a vector of cash-flows X = X°%t — X",

e We define the cash-out of the year (i.e. benefits) as follows:

out B
X% = E Skt—1 Ikt

where ]I}CB, +—1 1s a dichotomic r.v. which assumes value 1 whereas the k-th poli-
cyholders becomes eligible to obtain the benefit in the time span (¢ — 1, ¢]

e Similarly, we define the cash-in of the year (i.e. premiums) as:

NOTE: premium rate

lo
; calculated on a 1t order basis
XI:;L'T'L — E Sk,t _
k=1

where p; is the premium rate per unitary sum insured. Notice that X" is
Fi-measurable, as the premium rate is a quantity known when the policies are
underwritten.




Best Estimate Liability (BEL)

e We define the Best Estimate Liability as follows:

n n—1
: ST (it )T E(XF) - D (it )' T E (X F)
T=t+1 T=t BEL = Expectation of discounted
perspective net cash-flows
where i.(t,7) is the spot rate (EIOPA risk-free rate curve). (2 order demogr. bases)

e Conmnsidering that Si + is Fi-measurable and exploiting its definition, it is possible

to write
n—1 lo T—1
Ry =S;-» (1+i(t,7+1)" T 'E (E (H ]Iﬁ',s) : I[E,T|J-“t)
=t k=1 s=t
n—1 lo ——1
— S > (A4t ) T E (E i (H HL) .p,,,ft) = 5 (R)
=t k=1 =t BEL rate:
depending on insurance type
where R; is the best estimate rate (per unitary sum insured). | (Term, Endowm., Pure Endowm.)




Annual CDR: relation and decomposition

e Counsistently with the existing literature (see Wuthrich and Merz (2013)) we define the

Claims Development Result (CDR) between time ¢ and time ¢t + 1 as

The istantaneous jump in BEL
@—(Rt + 2™ - (U4 it t+ 1)) — X2 — Ryqa

demographic bases

ie. = CDR{$%°S + CDRIIE"? = (from R".., toR,..)
Total Demographic ‘ ~ . {}
Profits/Losses = ((Rt J a;%n) . (1 1 ’it(t,t 4 1)) — Xf_}f{ = Rt—f—l) A (Rt—|-1 — Rt—|—1)
with
n—1 lo —1
Fod=Seer - S Qi ey e (S0 TT 1) 217
T=t+1 k=1 s=t+1
n—1 lo 7—1
— By > A+at+1, )T E D 11 .| pr|Fe ] =St
T=t+1 k=1 s=t+1

® i (t +{1, 7) is the forward rate between t+ 1 and 7 available from the spa
t. Rt_|_1 and ’Rt_|_1 are the best estimate and the best estimate ra

(1)

curve at time
cs of the policyholders

in t + 1 calculated with demographic basis equal to those used in %, i.e. Ft.

Keep 2" order demographic bases
unchanged from time t to t+1




Idiosyncratic CDR and SaR rate

e It is therefore possible to rewrite C’DR{_{%OS in a compact way:

Sum-at-Risk rate

CDRIFD)= 32 [ (500 (115 ) 17 — B (See- (112 1Fie)] G
k=1

e Previous relation depends on the SaR rate 7;41 connectedto the contract. In particular
we have:

Positive SaR rate (1) Negative SaRrate (17)

In case of policies that recognize a benefit in case of death (as term insurance/(In case of pure endowment contracts and annuity in the deferral period
endowment)

n—1 lo
n—1 lo T—1 =— (1+z‘t(t+1,7+1))t‘TE( ( % S) I TJ—")
@=1- (1+it(t+1,7+1))”3(z( 11 11{;,3) -]If’:,r|]~‘t) G-~ 3 2 6111 e )

T=t+1 k=1 s=t+1 n—1 o lo 7—1
. o / -1 + >0 (A Hdt+1,7) T E(Z ( 11 Hﬁ,s) - pr | F
. N 1'—' T == = =T
¢ 5 v s (311 k) o) et
T=t+1 k=1 \s=t+1 In case of annuity in the payment period

n—1
=—1— > (1+z’t(t+1,7+1))t_TE(Z( 11 LH> |J—})

T—=t4+1 s=t+1




Term Insurance: BEL rate vs SaR rate
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Pure Endowment: BEL rate vs SaR rate
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Distribution characteristics of r.v. idiosyncratic CDR

e The expected value of the CDRI!%°? is equal to zero: E (C’DR{ﬁ"’fs .7-})

For the meaning itself of
«Best Estimate» (no prudence)

e Variance of CDR,{_‘f_ﬁOS is obtained as follows:

o? (CDRIL|F) = (l+ Guve - (1= qure) - S2.0) B (70| F2)

So the STD(CDR) is depending
on the absolute value of SaR rate
(increase/decrease according insurance type)

. Usually by far>0
e Skewness of CDR{iﬁOS is obtained as follows: unless extreme ages _Ratioalways>0
(and decreasir]g time by time) and itincreases accordingly
higher CV of sums insured

Idios L (1 — 2 - q:c—l—tﬁ
r)/ (CDRt+1 |ft) _. \/lt . Qm—i—t . (]_ — q:c—{—t) .

where S; ; is the j-raw moment of the insuréd sums at time ¢.

N~

Decreasing time by time for cohort’s size |, and
increasing by q(1-q) Binomial Std (for not-extreme ages)

NOTE: all these formulae are valid for whatever type of
«traditional» life insurance contracts and in case of single/annual premiums




Idiosyncratic Mortality Risk (1/2)

e (Comnsidering contracts with a positive SaR, we focus on a USP approach for

idiosyncratic

mortality risk

e We define the random variable Y; ;1 as a linear transformation of CDR{iﬁOS:
Idios
Yit1 = —CDR;7™ +d when CDR =d — Best Case = No deaths

where d = max(CDRIY?®) = (Re + ™) - (1 4+ 4:(t,t + 1)) — St Rey1, that is the
case in which all policyholders survive at the end of the year.

e We need to make this transformation of the CDR in order to get a new r.v. Y:i1

with positive skewness and a non-negative support as a LogINNormal.

e We define the SCR with the USP approach for mortality as follows:

SCRYS"™ = VaRgg 59 (Y1) — d




ldiosyncratic Mortality Risk (2/2)

e Under the assumption that the r.v. Y;1; is LogNormal distributed, we obtain:

. _ea:p (\/ln (1 + CV§t+1)> 1_
o \/1 + CV2 N

with the coefficient of variation of Y;+1 defined as follows:

C'Vs _ \/(Zt © Qott - (1 — Qoiyt) - S2.t) - E(0iq|F)
T T R b i) - (Lt t+ D) — Ben

The choice of a LogNormal distribution is made consistently with
the underlying assumptions made in SlI-Standard Formula
for the calibration of many sources of risk
(e.g. Premium and Reserve Risk in Non-Life UWRisk)




Idiosyncratic Longevity Risk (Pure Endowment & Annuity-deferral)

e Considering contracts with a negative sum-at-risk (as pure endowment and an-

nuities in the deferral period). We define the random variable W, as

W1 = CDR{YY® — g

when CDR = g—> Worst Case = All survive

where g = min {CDR{{*} = (Re +x7™) - (1 44 (¢, t+ 1)) — S¢Re¢y1, that is the
case in which all policyholders survive (worst case scenario)

e We define the SCR with the USP approach for longevity r"i"‘s\k as follows:

o (fCera,) 69)
VITOVE,

where

NOTE: in case of longevity risk we need only to
make an additive shift to get non-negative support,
(CDR is already positively skewned as the LogNormal)

CVWt+1 -

\/(lt - Qott - (1 — Qott) - Sz,t) . E(nt2+1|-7:t)
Rivi — (Re + i) - (1 + e (t, t+ 1))




ldiosyncratic Longevity Risk (Annuity on-payment)

e Comnsidering instead an annuity in payment period, we obtain

where

1 —

exp (—\/ln (1+Cvi,,,) - 2.58) ]

\/1 +CVE,

L \/(lt * gr+t (1 — an_t) . SQ,t) . E(nt2_|_1\ft)

CVWt+1 —

Rt_|_1 + S — (Rt -+ ﬂfin) . (1 -+ it(tat + 1)) .




Numerical Analysis: aim and parameters

* We provide here a comparison of the results (5mln simulations) obtained by
applying the proposed USP vs Partial Internal Model (PIM) on some single cohorts.

* The approach has been tested on different types of contract, alternative volatilities of
the insured sums and varying portfolio’s size.

* |In the next table the main parameters of the cohorts are figured out:
Table 1: Model parameters

Characteristics Value

Number of policyholders in t =0 15,000

Cohort age in t =0 40

Palicieg duration
(st ordef\lemographic base 2nd ordel@ stressed £ 20%) (conservative)
Qnd ordydemographic base Lee-Carter model apptted on 1852-2019 Italy data
1stotder technical rate 1%

Risk-free curve August 2023, EIOPA’s risk-free curve

Aver insured 100,000
CCoeff Var. of Sp (2)

* Please note the reference year is the 10" year from the origin, so assuming to be in t=9 as valuation date.




Numerical Analysis: main results — Term Insurance (Year=10)

the simulated value provided by the PIM.

* Simulated characteristics of CDR show a very good convergence to the theoretical values.
* As expected, CDR distribution in this case is skewed, due to the sign of the SaR rate.
* With the proposed USP approach, we obtain a capital requirement for idiosyncratic demographic risk that is very close to

» Differences with respect to the PIM results are mainly due to slight differences in skewness and kurtosis

Y] o: Simulated vs LogNormal

Term Insurance - Histogram of Y10 and LogNormal distribution

Term Insurance - Histogram of CDR_10 Idios

Y=-CDR+d

Best Case

Characteristics of CDR and SCR | Value
Theoretical Expected Value 0
Simulated Expected Value -869
Theoretical Standard Deviation 1,017,345
Simulated Standard Deviation 1,009,116
Theoretical Skewness -2.50
Simulated Skewness -2.49
LogNormal Skewness 1.66
Simulated SCR 4,215,031
SC RUSEm 4,133,939
Simulated SCR/St.Dev. 4.14
BEL 5,345,111
Simulated SCR/BEL P 78.86%

Z

-5min
CDR_10Idios Y10

The mutiplier is clearly much larger than Normal multiplier (2.58)

because of significant negative skewness of CDR in this case (Term Ins.)




Numerical Analysis: main results — Pure Endowment (Year=10)

the simulated value provided by the PIM.

* Simulated characteristics of CDR show a very good convergence to the theoretical values.
* As expected, CDR distribution is, in this case, (g

skewed due to the sign of the SaR rate.

* With the proposed USP approach, we obtain a capital requirement for idiosyncratic demographic risk that is very close to

» Differences with respect to the PIM results are mainly due to slight differences in skewness and kurtosis

Pure Endowment - Histogram of CDR_10 Idios

10000 Worst Case

00000 —

CDR_10ldios

Wio: Simulated vs LogNormal

Pure Endowment - Histogram of W10 and LogNormal distribution

Characteristics of CDR and SCR | Value
Theoretical Expected Value 0
Simulated Expected Value -99
Theoretical Standard Deviation 367,514
Simulated Standard Deviation 366.199
Theoretical Skewness 2.50
Simulated Skewness 2.49
LogNormal Skewness 1.66
Simulated SCR 544,266
SCRVSH 533,208
Simulated SCR/St.Dev. A48 )
BEL e " 455,866,134

Simulated SCR/BEL ~

0.12%

The mutiplier is clearly much lower than Normal multiplier (2.58)
because of significant positive skewness of CDR in this case (Pure Endowm.)




Numerical Analysis: a comparison between 3 products

* We compare here the results obtained for three alternative contracts: Pure Endowment, Term Insurance and Endowment

* Itis noticeable the higher volatility and the negative skewness for Term and Endowment insurance contracts

* |nall cases, we notice a good proxy of SCR provided by the USP approach

Pure Endowment

NOTE: similar value to
Term Insurance

Term Insurance

N
e
v
.

Characteristics Value Characteristics Value Charaeteristics Value
Theoretical Expected Value 0 Theoretical Expected Value 0 Theoretical Expected Value 0
Simulated Expected Value -99 Simulated Expected Value -869 Simulated Expected, Value -421
Theoretical Standard Deviation 367,514 Theoretical Standard Deviation | 1,017,345 Theoretical Standard Deyviation 646,071
Simulated Standard Deviation 366,199 Simulated Standard Deviation | 1,009,116 ; Simulated Standaid, Deviation 642,644
Theoretical Skewness 2.50 Theoretical Skewness —Q.SOsi-’ Theoretical Skewness-, ™. . [-2.50
Simulated Skewness 2.49 Simulated Skewness =249 ) [ Simulated Skewness “ -2.49
LogNormal Skewness 1.66 LogNormal Skewness 1.66 LogNormal Skewness .66
Simulated SCR 544,266 Simulated SCR 4,215,031 Simulated SCR .| 2,682,446
SCRYSP! 533,298 SCRY>Tm 4,133,939: SCRUSEm . 2,625.287
Simulated SCR/St.Dev. 1.48 Simulated SCR/St.Dev. 4.14 Y Simulated SCR/St.Dev. “&4.15 !
BEL 455,866,134 BEL 53457111 BEL 467,175,733
Simulated SCR/BEL 0.12% Simulated SCR/BEL 78.86% Simulated SCR/BEL 0.57%




Numerical Analysis: proxy according CV and portfolio size

* We compare here the behaviour of the USP approach varying the sums
insured coefficient of variation (CV) from 0 to 4 and the size of the
portfolio, respectively. "
e The proposed USP approach consistently provides highly reliable
estimates of SCR for CVs within a range around 2 (STD(Sums)=200,000 €):
* for Endowment and Term Insurance, a CV range between 1.25 and
2.75 results in an under/overestimation not exceeding 5%, with
substantial overlap between Term and Endowment cases;
e for Pure Endowments, the CV range moves to 1.75-3.00 being the
SCR computed on the short tail of the CDR distribution (which
exhibits positive skewness). Similar results are expected also for
annuities.

* In case of Endowment type, the size of portfolio shows the
diversification effect with a reasonable reduction of the ratio SCR/BEL _
when the size increases. In all cases we notice a very good approximation 20-6
assured by the USP approach. -

* Clearly, we should keep in mind we have considered only diversifiable risk
here (no Trend risk), so this decrease should be rather smoothed in case oo

5000 10000 15000 20000 25000

we are able to add Trend risk. Ph_number

SCR_USP — Simulated_SCR




Trend Risk: a possible algorithm

1. Using train data available at time ¢, fit a projection model to forecast ex-
pected mortality rates for the residual coverage period (Gxits -+ Quetttn—1);

2. In each simulation, generate the deaths of the policyholders from /; Bernoulli
r.v.;

3. In each simulation 2 = 1, ...H, build a new train data set DB/}* ; composed
by the train data set used at step 1 and by the one-year mortality rates
obtained at step 2 in the simulation A.

4. In each simulation, re-fit the mortality model selected at step 1 on the
new train dataset DB/} |, enriched with additional information simulated
under real-word probabilities, and estimate new expected mortality rates
for the residual coverage period at time ¢ + 1.

5. Compute for each simulation CDRZ’EFend;
6. Calculate
SCR7rend = —min [CDR?jr?;rend : FCDRtTff”d (CDRi’LjLCI;Tend) - 0_5%]
(1)




Conclusions and further improvements

* We proposed an alternative methodology for assessing capital requirement for idiosyncratic (diversifiable)
demographic risk for the main «traditional» types of life iInsurance contracts, where also the relevance of sums
insured volatility is put in evidence for risk evaluation.

* The compact formulae here exposed can represent adpossible undertaking-specific approach (USP) in Solvency
Il framework, being able to capture the behaviour of random variable CDR of different products based on the specific
data of the portfolio, split according Cohorts/HRG/Model points.

* Two USP approaches are given for measuring the capital requirement for respectively idiosyncratic mortality and
longevity risk.

* Numericalanalyses are also carried out for some cohorts, to evaluate the goodness of the proposed ag roach using
as a benchmark arisk-theory based Partial Internal Model, then confirming how it could be a suitable alternative
to Standard Formula or Simulation Models.

* Further analyses may be carried out to check the consistency of our USP approach also for different combinations of
duration, sums insured distribution, type of premiums payment.

* Additional studies: in our research we investi%( ted on a model inserting Trend Risk also and to compare the total
Demographic risk estimated on the presentrisk-based approach with the Sll - Standard Formula (see Della Corte
presentation) and on reinsurance risk mitigation strategies
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