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Introduction



Introduction

Understanding and quantifying cyber risk has become a critical priority for researchers,

insurers, and policymakers.

⇓
Data breaches

⇓
Highly sensitive information

⇓
Financial & reputational threats
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Existing Literature

Empirical studies have employed a variety of statistical methods to capture breach

frequency and severity.

- Sun et al. (2020): hurdle models to account for zero-inflated count data;

- Edwards et al. (2016) and Wheatley et al. (2019): log-normal or heavy-tailed

distributions for breach sizes;

- Li & Mamon (2023): Markov-modulated processes −→ Health-related data breaches;

- McLeod & Dolezel (2018) and Hu et al. (2022): state-level frequency-severity models.

3



Our contribution

Motivations

The reporting delay in data breach incidents poses a significant challenge for Incurred But

Not Reported (IBNR) studies

⇓
Pricing & Reserving

Our aim

Model the timing and reporting of data breaches.

The idea

Develop a Hierarchical Bayesian modeling framework that adjusts for reporting delays

and decomposes breach counts into interpretable temporal, seasonal, and delay-related

components (similarly to Bastos et al., 2019 for epidemiology).
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Mathematical Framework



Mathematical framework

We consider three Hierarchical Bayesian models for delay-adjusted reporting of cyber

breach counts.

Let nt,d be a random variable representing the number of cases that occurred at time

t = 1, 2, . . . , T but not reported until d = 0, 1, 2, . . . , D time units later.

- T is the last time step for which data is available;

- D is the maximum acceptable delay.
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Mathematical Framework

Model A - Hierarchical Negative

Binomial



Model A

We assume that nt,d is a Negative Binomial random variable, i.e.

nt,d ∼ NegBin (λt,d, θ) , θ > 0,

where θ is the overdispersion parameter, and the mean λt,d has a log-linear predictor

log λt,d = αt + βd + γt,d + ηw(t), (1)

where αt, βd, and ηw(t) capture respectively time, delay and seasonal effects, while γt,d is a

time-delay interaction component.
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Model A II

The random effects in Equation (1) are modelled as first-order random walks:

αt ∼ N
(
αt−1, σ

2
α

)
where σα ∼ HN

(
0.12

)
βd ∼ N

(
βd−1, σ

2
β

)
where σβ ∼ HN (1)

γt,d ∼ N
(
γt−1,d , σ

2
γ

)
where σγ ∼ HN

(
0.12

)
The seasonal component ηw(t) is modelled as a Conditional Auto-Regressive (CAR)

model for monthly seasonality:

ηw(t) ∼ CARRW2(W = 12, σ2
η) where ση ∼ HN (1) .

The overdispersion parameter

θ ∼ Gamma(αθ, βθ) where αθ, βθ ∼ Exp(1).
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Mathematical Framework

Model B: HNB with multiplicative

interaction



Model B

We assume that nt,d is a Negative Binomial random variable, i.e.

nt,d ∼ NegBin (λt,d, θ) , θ > 0,

where θ is the overdispersion parameter and λt,d, in contrast to Model A, is defined as

log λt,d = αt + βd + γt,d + ηw[t] +αt · βdαt · βdαt · βd.

The additional component αt · βd captures time-delay interactions.

Remark

For each component we use the same structure adopted for Model A.
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Mathematical Framework

Model C: Hierarchical Zero-Inflated

Negative Binomial



Model C

We assume that nt,d is a Zero-Inflated Negative Binomial random variable, i.e.

nt,d ∼ ZINB (λt,d, θ, xzinb)

where θ is the dispersion parameter, 1− xzinb is the zero-inflation probability, and

log λt,d = αt + βd + γt,d + ηw(t).

ZINB likelihood:

P (nt,d = n) =


(1− xzinb) + xzinb

(
θ

θ+λt,d

)θ
, n = 0

xzinb · NB(n;λt,d, θ), n > 0.

Remark

Same structure as Model A with the addition:

xzinb ∼ Beta(1, 1).
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Application

Data and calibration



Our dataset: U.S. state attorneys

In this work, we exploit breach data released by the U.S. state attorneys.

Motivations

- Collected under legally mandated and state-specific notification laws −→ ↑ legal

consistency;

- Reports submitted directly by the affected organizations −→ ↓ selection biases;

- Reporting process is typically granular and timely (even daily updates on breach

occurrence, disclosure dates and number of individuals affected).

These aspects enhance the reliability of longitudinal analyses and support the detection of

temporal patterns in breach activity.
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The dataset

STATE NOTIFICATION TO AG Beg Report End Report Beg Occ End Occ # Obs Size

1 CALIFORNIA January 1, 2012 20/01/2012 19/07/2024 05/07/2007 13/06/2024 4,096 NO

2 DELAWARE April 14, 2018 07/12/2020 26/07/2024 22/02/2019 06/06/2024 280 YES

3 INDIANA 2006 18/12/2013 07/05/2024 01/01/2000 24/04/2024 9,778 YES

4 MAINE 2005 01/12/2012 11/09/2020 22/09/1999 17/08/2020 3,070 YES

5 MONTANA October 1, 2015 06/05/2015 12/08/2024 01/01/1995 21/07/2024 5,721 YES

6 NORTH DAKOTA April 13, 2015 02/01/2019 25/07/2022 01/01/2012 28/06/2022 289 YES

7 OREGON January 1, 2016 30/10/2015 16/08/2024 01/04/2008 26/06/2024 1,148 NO

8 WASHINGTON July 24, 2015 11/08/2015 22/07/2024 01/04/2008 13/06/2024 1,356 YES

total 25,738
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The dataset: California

We focus on a high-activity jurisdiction, i.e. California, which provides data richness and

regulatory relevance.

We use monthly aggregated breach reports from 2015 through December 2024.
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Delay: California vs Indiana
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Calibration

Posterior distribution estimations implied by Model A, Model B and Model C are obtained

through

⇓
Markov-Chain Monte Carlo sampling

(R packages nimble + doparallel)

Setup

- Chains: 3

- Burn-in sample: 1× 106

- Total iterations: 2.5× 106

- Thinning parameter: 10

 =⇒

Computationally intensive

⇓
Integrated Nested Laplace Approximation

⇓
Fast and accurate inference even in

high-dimensional settings
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Numerical Results



Numerical results

The analysis

- Model selection → Goodness of fit metrics;

- Graphical comparison → Posterior predictive distributions;

- IBNR estimates −→ Comparison wrt Chain-Ladder method.

WAIC RMSE MAE Coverage Rhat ESS

Model A 3326.13 1.410 0.817 98.94% 1.009 2620

Model B 3270.93 1.336 0.774 99.35% 1.002 3891

Model C 3328.20 1.410 0.817 99.02% 1.003 2680
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Numerical results II
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Numerical results III
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Numerical results IV

IBNR Predictions MAE RMSE

Chain Ladder 8.709 13.726

Model A 1.373 5.554

Model B 1.431 5.479

Model C 1.353 5.477
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Conclusion



Conclusion

This work introduces a Hierarchical Bayesian model −→ IBNR cyber incidents.

Advantages

- Breach counts decomposed into temporal, seasonal and delay-adjusted components;

- High predictive accuracy;

- Outperform traditional methods (e.g., the Chain-Ladder approach).

Limitation

- MCMC is computationally intensive −→ INLA.

Future extension

- Modelling jointly frequency & severity −→ Reserving.
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Thank you for your attention!
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