A Bayesian framework for addressing bias in delayed cybersecurity breach data

Fabio Viviano

Joint work with Marco Pirra & Sofia Sarubbo

Department of Economics, Statistics and Finance University of Calabria - ITALY

E-mail: fabio.viviano@unical.it

Workshop PRIN 2022

Building resilience to emerging risks in financial and insurance markets Diamante (CS), June 12 - 13, 2025

- 1. Introduction
- 2. Mathematical Framework
- 3. Application
- 4. Numerical Results
- 5. Conclusion

Introduction

Understanding and quantifying **cyber risk** has become a **critical priority** for researchers, insurers, and policymakers.

Data breaches

Highly sensitive information

Financial & reputational threats

Empirical studies have employed a variety of statistical methods to capture breach **frequency** and **severity**.

- Sun et al. (2020): hurdle models to account for zero-inflated count data;
- Edwards et al. (2016) and Wheatley et al. (2019): log-normal or heavy-tailed distributions for breach sizes;
- Li & Mamon (2023): Markov-modulated processes → Health-related data breaches;
- McLeod & Dolezel (2018) and Hu et al. (2022): state-level frequency-severity models.

Motivations

The reporting delay in data breach incidents poses a significant challenge for **Incurred But Not Reported** (IBNR) studies

V Pricing & Reserving

Our aim

Model the **timing** and **reporting** of data breaches.

The idea

Develop a **Hierarchical Bayesian modeling framework** that adjusts for **reporting delays** and decomposes breach counts into interpretable **temporal**, **seasonal**, and **delay**-related components (similarly to Bastos *et al.*, 2019 for epidemiology).

MATHEMATICAL FRAMEWORK

We consider three **Hierarchical Bayesian models** for **delay-adjusted** reporting of cyber breach counts.

Let $n_{t,d}$ be a random variable representing the number of cases that occurred at time $t=1,2,\ldots,T$ but not reported until $d=0,1,2,\ldots,D$ time units later.

- T is the last time step for which data is available;
- D is the maximum acceptable delay.

Delay Time	1	2	3	4	 D	n	
1	$n_{1,1}$	$n_{1,2}$	$n_{1,3}$	$n_{1,4}$	$n_{1,D}$	n_1	
2	$n_{2,1}$	$n_{2,2}$	$n_{2,3}$	$n_{2,4}$	$n_{2,D}$	n_2	Observed
							Goservea
T-D	$n_{T-D,1}$	$n_{T-D,2}$	$n_{T-D,3}$	$n_{T-D,4}$	$n_{T-D,D}$	n_{T-D}	l J
T-D+1	$n_{T-D+1,1}$	$n_{T-D+1,2}$	$n_{T-D+1,3}$	$n_{T-D+1,4}$	$n_{T-D+1,D}$	n_{T-D+1}	
							Nowcasting
T-1	$n_{T-1,1}$	$n_{T-1,2}$	$n_{T-1,3}$	$n_{T-1,4}$	$n_{T-1,D}$	n_{T-1}	IJ

Mathematical Framework

Model A - Hierarchical Negative

BINOMIAL

We assume that $n_{t,d}$ is a **Negative Binomial** random variable, i.e.

$$n_{t,d} \sim \mathsf{NegBin}\left(\lambda_{t,d}, \theta\right), \quad \theta > 0,$$

where θ is the overdispersion parameter, and the mean $\lambda_{t,d}$ has a log-linear predictor

$$\log \lambda_{t,d} = \alpha_t + \beta_d + \gamma_{t,d} + \eta_{w(t)},\tag{1}$$

where α_t , β_d , and $\eta_{w(t)}$ capture respectively **time**, **delay** and **seasonal** effects, while $\gamma_{t,d}$ is a **time-delay** interaction component.

The **random effects** in Equation (1) are modelled as first-order random walks:

$$\alpha_t \sim \mathcal{N}\left(\alpha_{t-1}, \sigma_{\alpha}^2\right) \quad \text{where} \quad \sigma_{\alpha} \sim \mathcal{H}\mathcal{N}\left(0.1^2\right)$$

$$\beta_d \sim \mathcal{N}\left(\beta_{d-1}, \sigma_{\beta}^2\right) \quad \text{where} \quad \sigma_{\beta} \sim \mathcal{H}\mathcal{N}\left(1\right)$$

$$\gamma_{t,d} \sim \mathcal{N}\left(\gamma_{t-1,d}, \sigma_{\gamma}^2\right) \quad \text{where} \quad \sigma_{\gamma} \sim \mathcal{H}\mathcal{N}\left(0.1^2\right)$$

The seasonal component $\eta_{w(t)}$ is modelled as a Conditional Auto-Regressive (CAR) model for monthly seasonality:

$$\eta_{w(t)} \sim \mathsf{CAR}_{\mathsf{RW2}}(W = 12, \sigma_{\eta}^2) \quad \mathsf{where} \quad \sigma_{\eta} \sim \mathcal{HN}\left(1\right).$$

The **overdispersion parameter**

$$\theta \sim \mathsf{Gamma}(\alpha_{\theta}, \beta_{\theta})$$
 where $\alpha_{\theta}, \beta_{\theta} \sim \mathsf{Exp}(1)$.

MATHEMATICAL FRAMEWORK

MODEL B: HNB WITH MULTIPLICATIVE INTERACTION

We assume that $n_{t,d}$ is a **Negative Binomial** random variable, i.e.

$$n_{t,d} \sim \mathsf{NegBin}\left(\lambda_{t,d}, \theta\right), \quad \theta > 0,$$

where θ is the overdispersion parameter and $\lambda_{t,d}$, in contrast to **Model A**, is defined as

$$\log \lambda_{t,d} = \alpha_t + \beta_d + \gamma_{t,d} + \eta_{w[t]} + \alpha_t \cdot \beta_d.$$

The additional component $\alpha_t \cdot \beta_d$ captures time-delay interactions.

Remark

For each component we use the same structure adopted for Model A.

MATHEMATICAL FRAMEWORK

NEGATIVE BINOMIAL

Model C: Hierarchical Zero-Inflated

We assume that $n_{t,d}$ is a **Zero-Inflated Negative Binomial** random variable, i.e.

$$n_{t,d} \sim \mathsf{ZINB}\left(\lambda_{t,d}, \theta, x_{\mathsf{zinb}}\right)$$

where heta is the dispersion parameter, $1-x_{\mathsf{zinb}}$ is the zero-inflation probability, and

$$\log \lambda_{t,d} = \alpha_t + \beta_d + \gamma_{t,d} + \eta_{w(t)}.$$

ZINB likelihood:

$$\mathbb{P}(n_{t,d} = n) = \begin{cases} (1 - x_{\mathsf{zinb}}) + x_{\mathsf{zinb}} \left(\frac{\theta}{\theta + \lambda_{t,d}}\right)^{\theta}, & n = 0\\ x_{\mathsf{zinb}} \cdot \mathsf{NB}(n; \lambda_{t,d}, \theta), & n > 0. \end{cases}$$

Remark

Same structure as Model A with the addition:

$$x_{\sf zinb} \sim {\sf Beta}(1,1).$$

APPLICATION

DATA AND CALIBRATION

In this work, we exploit **breach data** released by the **U.S. state attorneys**.

Motivations

- Collected under legally mandated and state-specific notification laws → ↑ legal consistency;
- Reports submitted directly by the affected organizations $\longrightarrow \downarrow$ selection biases;
- Reporting process is typically **granular** and **timely** (even daily updates on breach occurrence, disclosure dates and number of individuals affected).

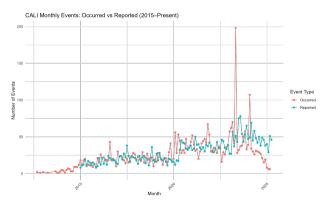
These aspects enhance the reliability of longitudinal analyses and support the detection of temporal patterns in breach activity.

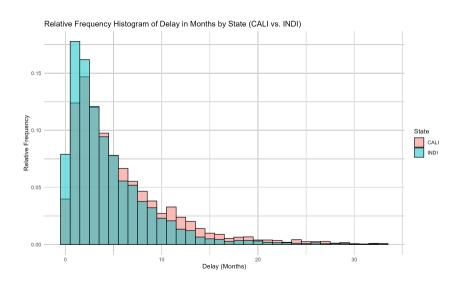
	STATE	NOTIFICATION TO AG	Beg Report	End Report	Beg Occ	End Occ	# Obs	Size
1	CALIFORNIA	January 1, 2012	20/01/2012	19/07/2024	05/07/2007	13/06/2024	4,096	NO
2	DELAWARE	April 14, 2018	07/12/2020	26/07/2024	22/02/2019	06/06/2024	280	YES
3	INDIANA	2006	18/12/2013	07/05/2024	01/01/2000	24/04/2024	9,778	YES
4	MAINE	2005	01/12/2012	11/09/2020	22/09/1999	17/08/2020	3,070	YES
5	MONTANA	October 1, 2015	06/05/2015	12/08/2024	01/01/1995	21/07/2024	5,721	YES
6	NORTH DAKOTA	April 13, 2015	02/01/2019	25/07/2022	01/01/2012	28/06/2022	289	YES
7	OREGON	January 1, 2016	30/10/2015	16/08/2024	01/04/2008	26/06/2024	1,148	NO
8	WASHINGTON	July 24, 2015	11/08/2015	22/07/2024	01/04/2008	13/06/2024	1,356	YES
						total	25 738	

11

We focus on a high-activity jurisdiction, i.e. **California**, which provides data richness and regulatory relevance.

We use monthly aggregated breach reports from 2015 through December 2024.





Posterior distribution estimations implied by Model A, Model B and Model C are obtained through

Markov-Chain Monte Carlo sampling

(R packages nimble + doparallel)

Setup

- Chains: 3
- Burn-in sample: 1×10^6 Total iterations: 2.5×10^6
- Thinning parameter: 10

Computationally intensive

Integrated Nested Laplace Approximation

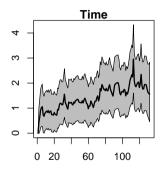
Fast and accurate inference even in high-dimensional settings

NUMERICAL RESULTS

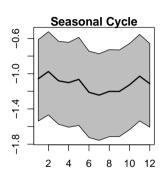
The analysis

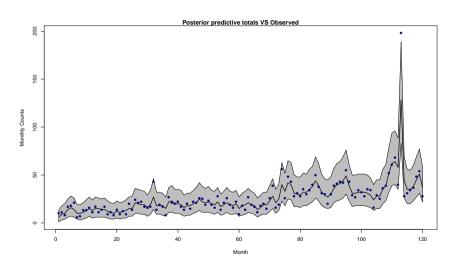
- Model selection → **Goodness of fit metrics**;
- Graphical comparison \rightarrow **Posterior predictive distributions**;
- **IBNR estimates** → Comparison wrt Chain-Ladder method.

	WAIC	RMSE	MAE	Coverage	Rhat	ESS
Model A	3326.13	1.410	0.817	98.94%	1.009	2620
Model B	3270.93	1.336	0.774	99.35%	1.002	3891
Model C	3328.20	1.410	0.817	99.02%	1.003	2680









IBNR Predictions	MAE	RMSE
Chain Ladder	8.709	13.726
Model A	1.373	5.554
Model B	1.431	5.479
Model C	1.353	5.477

CONCLUSION

This work introduces a **Hierarchical Bayesian model** \longrightarrow **IBNR cyber incidents**.

Advantages

- Breach counts decomposed into **temporal**, **seasonal** and **delay**-adjusted components;
- High predictive **accuracy**;
- Outperform traditional methods (e.g., the Chain-Ladder approach).

Limitation

- MCMC is computationally intensive → **INLA**.

Future extension

- Modelling jointly frequency & severity → Reserving.

Thank you for your attention!

- Bastos, L.S., Economou, T., Gomes, M.F., Villela, D.A., Coelho, F.C., Cruz, O.G., Stoner, O., Bailey, T., Codeço, C.T. (2019). A modelling approach for correcting reporting delays in disease surveillance data. *Statistics in medicine*, 38(22), pp. 4363–4377.
- Edwards, B., Hofmeyr, S., Forrest, S. (2016). Hype and heavy tails: A closer look at data breaches. Journal of Cybersecurity, **2**(1), pp. 3–14.
- Hu, K., Levi, R., Yahalom, R., Zerhouni, E.G. (2022). Supply chain characteristics as predictors of cyber risk: A machine-learning assessment. Available at https://api.semanticscholar.org.
- Li, Y., Mamon, R. (2023). Modelling health-data breaches with application to cyber insurance.
 Computers & Security, 124.
- McLeod, A., Dolezel, D. (2018). Cyber-analytics: Modeling factors associated with health-care data breaches. *Decision Support Systems*, 108, pp. 57–68.

- Sun, H., Xu, M., Zhao, P. (2020). Modeling malicious hacking data breach risks. *North American Actuarial Journal*, **25**, pp. 484–502.
- Wheatley, S., Hofmann, A., Sornette, D. (2019). Data breaches in the catastrophe framework & beyond. Available at https://api.semanticscholar.org/CorpusID:155100199.