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M. Costabile, I. Massabó, E. Russo, A. Staino 1 R. Mamon 2

Y. Zhao 3

1University of Calabria

2University of Western Ontario

3Guangdong University of Foreign Studies Institute

Workshop PRIN 2022
Building resilience to emerging risks
in financial and insurance markets



Introduction

In traditional actuarial models, the premium of life insurance
policies are computed under the assumption of deterministic
interest and mortality rates

consequently, the fair value of insurance benefits such as the
pure endowment is calculated as the product of the discount
factor under the compound law of interest and the survival
probability of the policy holder

when the dynamics of these two state variables are stochastic,
both the discount factor and the survival probability become
random

under the assumption that interest and mortality variables are
independent, the fair value of the pure endowment is
expressed as the product of the expectations of the two
random terms under the risk-neutral probability measure
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Introduction

By following this product-of-expectations result, the fair value
of more complex contingent claims with various interest rate
and mortality dynamics was derived under the common
assumption that interest and mortality variables are
independent

such a simplifying assumption allows the computation of the
fair value of a life insurance policy by merely separating the
price of mortality risk from the price of financial risk

the advent of financial innovations, along with rapid
technological changes, ongoing regulation overhauls, natural
disasters and catastrophes, and political events around the
globe, simultaneously affect both financial and mortality risks

thus, an integrated modelling that includes a description and
quantification of the risks’ dependence is of high importance
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Introduction

For some decades, certain actuarial studies tackle the
consequences of the potential dependence between
demographic factors influence the financial factors through a
constant correlation

the first attempt to consider the dependence between financial
and demographic factors, when evaluating life insurance
policies, dates back to Jalen et al (2009) extended by Liu et al
(2014) based on the change of numeraire technique

the above mentioned papers model the dependence by
considering stochastic demographic and financial factors with
constant correlation only.
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Introduction

a stochastic correlation structure was introduced in Deelstra
et al (2016) into their multifactor models for the mortality
and interest rates by relying on affine models restricted to
positive values

De Fonseca (2024) put forward a linear-rational Wishart
model for the joint evolution of mortality and interest rates
under which closed-form solutions were computed for the
survival-type bonds and guaranteed annuity options

our motivation is to improve the actuarial framework, where
the financial and demographic factors have a correlation
whose movement is in accord with a bounded Jacobi process
or with a transformed modified Ornstein-Uhlenbeck process
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Introduction

The Jacobi process is a reasonably good model candidate for
correlation because it is mean-reverting and takes values in
the interval (-1, 1). Its analytical properties were extensively
studied, albeit in a different context to model the stochastic
correlation between financial state variables

nonetheless, due to the non-affine structure of the model it is
very difficult to obtain a closed-form pricing solution

thus, the practicability of the discrete-time lattice-based
approach as a modelling tool is even further heightened

moreover, its significance is brought to the fore especially
under the presence of product-embedded guarantees, like a
surrender option having an American-style option element, in
as much as the distribution of the optimal exercise time is not
known.
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Introduction

The implementation procedure starts with the separate
discretisation of the stochastic dynamics for the mortality
intensity, interest rate, and correlation processes

then we merge together the three univariate lattices ad we
obtain a trivariate lattice which approximate the joint
evolution of the three processes

the probability associated with each branch of the trivariate
lattice is defined in order to replicate the varying correlation
value affecting the interest rate and mortality intensity

the numerical investigations delving into various aspects of
model validation shows the merits of our new lattice
development custom-built for dependent risk factors with
stochastic correlation
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The framework

Under Q, we suppose that the interest rate, rt , and the
mortality intensity for individual of age x , µx

t , are defined as,

drt = κr (θr − rt)dt + σrdW
1
t

dµx
t = cµxµx

t dt + σµxW 2
t

the Brownian motions W 1
t and W 2

t are correlated with
correlation coefficient having value ρt at time t that is
modelled under Q through the bounded Jacobi process

dρt = κρ(θρ − ρt)dt + σρ

√
1− ρ2tdW

3
t

with W 3
t being independent of W 1

t and W 2
t , respectively

the interest rate process is approximated through a
recombining binomial lattice
in general, at i-th time interval, the nodes values are
determined as:
on the highest path, r(i , i) = r(i − 1, i − 1) + σr

√
∆t
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The framework

on the lowest path we define r(i , 0) = r(i − 1, 0)− σr
√
∆t

for the inner nodes (i , j) with i = 2, . . . , n and
j = 1, . . . , i − 1, we define r(i , j) = r(i − 2, j − 1), i.e, the
inner nodes replicate the node values on the two edges

to complete the process approximation, we are left to define
the jump probability for each node (i , j)

the probability of an upward jump, pr (i , j), is defined in order
to match the first two local order moments of the target
continuous-time distribution, at least within the limit, i.e.,

pr (i , j) =
r(i , j) + κr (θr − rt)∆t − r(i + 1, j)

r(i + 1, j + 1)− r(i + 1, j)
,
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The framework

The procedure used above is applied tout-court to generate a
lattice discretizing the mortality intensity process with the
only additional reasonable requirement of considering
non-negative values for this process

a similar lattice procedure is also followed to discretize the
correlation process. In this case we cut the lattice at −1 from
bottom and at 1 from top

upward jump probabilities, pµ(i , l) and pρ(i , h), and downward
jump probabilities, qµ(i , j) = 1− pµ(i , l) and
qρ(i , h) = 1− pρ(i , h) are defined as before to guarantee the
matching of the first two local order moments of the target
continuous-time distribution, at least within the limit
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The framework

The next step is to merge the three individual lattices to
create a unique lattice embedding the features of all the three
discretized processes

to do this, we define state of nature (i , j , l , h), where the
interest rate value is r(i , j), the mortality intensity value is
µx(i , l), and the correlation value is ρ(i , h)

from (i , j , l , h), eight branches arise, each of which represents
a scenario of the possible process outcomes

for example, (i + 1, j + 1, l + 1, h + 1) represents the state of
nature where the three processes jump up,
(i + 1, j + 1, l , h + 1) the state of nature where both the short
rate and the correlation jump up while the intensity of
mortality jumps down, and so on
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The framework

The transition probabilities associated with the scenarios
generated starting from state of nature (i , j , l , h), labelled by
puuu, puud , pudu, pudd , pduu, pdud , pddu, and pddd , are obtained
by solving a linear system in which we impose that the
matching of the marginal transition probabilities
characterizing the movements in the lattice for rt , µ

x
t , and ρt ,

and the correlation affecting the involved processes

the obtained solution is the following:
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puuu = pr (i , j)pµ(i , l)pρ(i , h) +
ρ(i , h)

8
;

puud = pr (i , j)pµ(i , l)qρ(i , h) +
ρ(i , h)

8
;

pudu = pr (i , j)qµ(i , l)pρ(i , h)−
ρ(i , h)

8
;

pudd = pr (i , j)qµ(i , l)qρ(i , h)−
ρ(i , h)

8
;

pduu = qr (i , j)pµ(i , l)pρ(i , h)−
ρ(i , h)

8
;

pdud = qr (i , j)pµ(i , l)qρ(i , h)−
ρ(i , h)

8
;

pddu = qr (i , j)qµ(i , l)pρ(i , h) +
ρ(i , h)

8
;

pddd = qr (i , j)qµ(i , l)qρ(i , h) +
ρ(i , h)

8
.



Applications

We compute the fair value of a mortality bond, issued at time
t, paying fixed coupons, C , at regular intervals
t + z , z = 1, . . . ,N, and a random principal, L(T ), at
maturity t + N linked to longevity or mortality experiences

the mortality bond price at time t under Q is given by

BM(t,T ) = C
N∑

z=1

P(t, t + z) + EQ
[
e−

∫ T
t r(u)duL(T )

]
,

where P(t, t + z) is the value at time t of a zero coupon bond

with maturity t + z , i.e., P(t, t + z) = EQ
[
e−

∫ t+z
t r(u)du

]
.
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Applications

We choose to make L(T ) dependent on mortality results

in particular, we consider a product that protects the issuer
against possible deviation of the observed mortality with
respect to a fixed reference value

consider a cohort aged x at time t and define L(T ) = Kl(T ),
where K is the bond face value and l(T ) is the loss generated
by the comparison between pT , i.e., the realized survivance
between age x and age x + (T − t), and pt , i.e., the fixed
reference value

the loss l(T ) has the form l(T ) = 1 + λ(pT − pt), where
λ ∈ (0, 1] is a correction term governing the recovery of the
survival spread



Applications

We choose to make L(T ) dependent on mortality results

in particular, we consider a product that protects the issuer
against possible deviation of the observed mortality with
respect to a fixed reference value

consider a cohort aged x at time t and define L(T ) = Kl(T ),
where K is the bond face value and l(T ) is the loss generated
by the comparison between pT , i.e., the realized survivance
between age x and age x + (T − t), and pt , i.e., the fixed
reference value

the loss l(T ) has the form l(T ) = 1 + λ(pT − pt), where
λ ∈ (0, 1] is a correction term governing the recovery of the
survival spread



Applications

We choose to make L(T ) dependent on mortality results

in particular, we consider a product that protects the issuer
against possible deviation of the observed mortality with
respect to a fixed reference value

consider a cohort aged x at time t and define L(T ) = Kl(T ),
where K is the bond face value and l(T ) is the loss generated
by the comparison between pT , i.e., the realized survivance
between age x and age x + (T − t), and pt , i.e., the fixed
reference value

the loss l(T ) has the form l(T ) = 1 + λ(pT − pt), where
λ ∈ (0, 1] is a correction term governing the recovery of the
survival spread



Applications

We choose to make L(T ) dependent on mortality results

in particular, we consider a product that protects the issuer
against possible deviation of the observed mortality with
respect to a fixed reference value

consider a cohort aged x at time t and define L(T ) = Kl(T ),
where K is the bond face value and l(T ) is the loss generated
by the comparison between pT , i.e., the realized survivance
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reference value
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survival spread



Applications

the value of the mortality bond at time t is computed as

BM(t,T ) = C
N∑

z=1

P(t, t+ z)+(K −λKpt)EQ
[
e−

∫ T
t r(u)du

]
+

λKEQ
[
e−

∫ T
t r(u)du−

∫ T
t µx (v)dv

]

The valuation of the last addendum in is done recursively on
the trivariate lattice imposing at maturity B(n, j , l , h) = λK

B(i , j , l , h) = e−[r(i ,j)+µx (i ,l)]∆t [puuuB(i+1, j+1, l+1, h+1)+

puudB(i + 1, j + 1, l + 1, h) + puduB(i + 1, j + 1, l , h + 1)+

puddB(i + 1, j + 1, l , h) + pduuB(i + 1, j , l + 1, h + 1)+

pdudB(i + 1, j , l + 1, h) + pdduB(i + 1, j , l , h + 1)+

pdddB(i + 1, j , l , h)]
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Applications

The first two addenda may be treated as a coupon bond with
annual coupon C and face value K − λKpt paid at maturity
T . Such a coupon bond may be evaluated through the lattice
discretizing the interest rate evolution

we report the value supplied by the trivariate lattice (TL)
when n = 400, the Monte-Carlo (MC) method with standard
errors (SE) reported in round brackets when considering
20000 simulations and 400 observations

T TL MC (SE) %
2 91.003766 91.04429 (0.034) 4.45E-04
5 72.359304 72.38516 (0.107) 3.57E-04
10 61.287339 61.12100 (0.405) 2.72E-03
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Applications

To highlight the impact of considering a stochastic process to
model the correlation between the interest rate and mortality
intensity dynamics, in the next figure we show the absolute
values of the relative differences between the mortality bond
values supplied by the trivariate lattice and the mortality bond
values when considering a constant correlation value

in particular we fix the attention on the policy with time to
maturity T = 5 years and compute the mortality bond value
for three different initial correlation value ρ0, i.e., −0.3, 0, and
0.3, when varying the value of the parameter θρ in the
stochastic correlation process that ranges in the interval
[−0.3, 0.3], by considering a step of 0.1

the computed absolute difference values that ranges from
0.01% to 2.60% evidence the impact on the mortality bond
values impressed by the stochastic correlation
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Figure: Relative difference values.
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The End

Thank You for Your attention!


