An enhanced self-adaptive multi-operator swarm optimization algorithm for ESG-compliant hedge fund

Giacomo Di Tollo¹, Massimiliano Kaucic^{2,3}, Filippo Piccotto^{2,3}

 $^1\mathsf{Faculty}$ of Economics, Marche Polytechnic University $^2\mathsf{Department}$ of Economics, Business, Mathematics and Statistics, University of Trieste $^3\mathsf{SOFI}$ Lab – Soft Computing Laboratory for Finance and Insurance

Workshop organized as part of the PRIN 2022 project titled "Building Resilience to Emerging Risks in Financial and Insurance Markets"

> June 12–13, 2025 Diamante, Italy

Introduction

Topic:

building an automated decision support system that can consider the investment preferences of an end-user by combining multi criteria decision analysis and metaheuristics

• Our goal:

considering a more articulated pre-selection system and introducing a novel metaheuristic for solving long/short portfolio optimization problems

Methodology:

Objective: Maximization of the Omega ratio

Constraints: Cardinality, bound, and budget

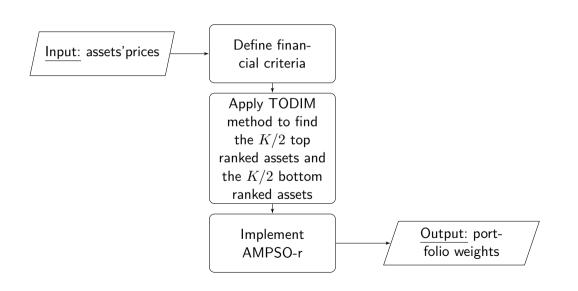
Solver: Adaptive multi-operator particle swarm optimization algorithm (AMPSO)

CHT: Multi criteria-based expert system for cardinality constraint Repair procedure for bound and budget constraints

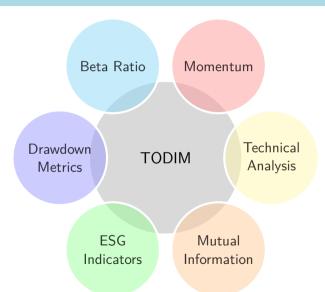
Proposed portfolio optimization model

portfolio weights: $\mathbf{w} \in \mathbb{R}^n$ asset returns in scenario j: $\mathbf{r}^{(j)} \in \mathbb{R}^n$ portfolio return in scenario j: $R_p^{(j)} = \mathbf{w}^\top \mathbf{r}^{(j)}$ leverage value: $s \in (0,1)$

Knowledge-based financial management system



Stock screening module



Market phase and volatility type calculation

 Tools employed for market phase: moving averages (MA), average directional index (ADX), recent returns

Bull: if $\Delta MA >$ threshold $\wedge \ recentReturn > 0 \wedge ADX > 20$ Bear: if $\Delta MA <$ -threshold $\wedge \ recentReturn < 0 \wedge ADX > 20$

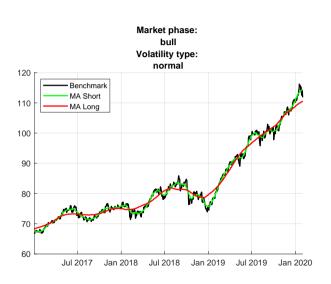
Sideways: otherwise

• Tools employed for volatility type: $volRatio = \frac{\text{volatility of the last 20 days}}{\text{volatility of all available days}}$

 $\begin{array}{l} \text{High: if } volRatio > 1.2 \\ \text{Low: if } volRatio < 0.8 \end{array}$

Normal: otherwise

Market phase and volatility type calculation



Phase-independent criteria for stock screening

• **Momentum** measure to exploit the ability of individual stocks to generate value over time

$$\longrightarrow MOM_i(t_1, t_N) = \prod_{t=t_0}^{t_{N-1}} (1 + r_{i,t}) - 1$$

• **Upside-to-downside beta ratio** to assess the responsiveness of a stock with respect to upward and downward market movements

$$\text{ $ \text{W}$ /D Ratio}_i = \frac{\beta_i^+}{\beta_i^-} \\ \text{ where } \beta^- = \frac{Cov(R_i,R_B|R_B<\tau)}{Var(R_B|R_B<\tau)} \text{ and } \beta^+ = \frac{Cov(R_i,R_B|R_B>\tau)}{Var(R_B|R_B>\tau)}$$

- Drawdown-Based metrics to evaluate the risk-adjusted quality of asset performance
 - Maximum drawdown (MaxDD) measures the largest peak-to-trough decline in price and indicates worst-case loss
 - Recovery factor measures how efficiently an asset recovers from losses $RF = \frac{\text{Final value Initial value}}{|MaxDD|}$
 - \longrightarrow Ulcer performance index $UPI = \frac{\text{average return}}{\text{Ulcer index}}$

Phase-independent criteria for stock screening

- **ESG indicators** allow for the integration of non-financial performance indicators that may reflect long-term sustainability and risk exposure
 - → ESG momentum captures the direction and speed of ESG score improvements, signaling firms that are actively enhancing their sustainability profile
 - □ change in ESG score over a specified horizon (e.g., 1, 3, 6, or 12 months)
 - → ESG volatility reflects the stability of ESG scores over time, identifying firms with consistent ESG practices and lower reputational or regulatory risk
 - ⊳ standard deviation of ESG scores over a longer horizon (e.g., 18, 24, 30, or 36 months)
- Empirical justification (Magnani, Guidolin, and Berk (2024))
 - → ESG momentum is shown to be a systematic risk factor
 - short-term improvements in ESG scores can predict lower cost of equity and generate alpha
 - ESG volatility is associated with lower uncertainty and higher risk-adjusted returns
 - portfolios long on stable ESG firms and short on volatile ones outperform

Phase-dependent criteria for stock screening

- Mutual information captures both linear and non-linear relationships between an asset and a benchmark, making it particularly useful when traditional correlation may fail to detect complex dependencies
 - \rightarrow let X, Y two random variables, then

$$MI(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log_2 \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

- → Adjust scores based on market phase:
 - ▷ Bull ⇒ prefer high MI (strong co-movement)
 - \triangleright Bear \Rightarrow prefer low MI (diversification)
 - ▷ Sideways ⇒ prefer MI near 0.5 (moderate, stable linkage)
- Signals from technical analysis depending on the market context

Market Phase	Volatility	Signal Function
Bull	High / Normal	bullSignal
Bear	High / Normal	bearSignal
Sideways	High	sidewaysHighVolSignal
Sideways	Low / Normal	${ t sidewaysLowVolSignal}$

TODIM method - comparisons and rankings

- **1** Constructing the multi-criteria decision making matrix $A = (a_{i,j})_{m \times s}$
- 2 Binning criteria matrix A'
- 3 Normalizing the binned matrix

$$N_{i,j}^{'} = \frac{a_{i,j}^{'} - \min_{i} a_{i,j}^{'}}{\max_{i} a_{i,j}^{'} - \min_{i} a_{i,j}^{'}}$$
 for benefits and $N_{i,j}^{'} = \frac{\max_{i} a_{i,j}^{'} - a_{i,j}^{'}}{\max_{i} a_{i,j}^{'} - \min_{i} a_{i,j}^{'}}$ for costs

f 4 Computing alternative comparisons for criterion c_j of alternative a_i against alternative a_k

$$CS_{j}(a_{i}, a_{k}) = \begin{cases} \beta_{j} \left(N'_{i,j} - N'_{k,j} \right)^{\eta_{1}} & \text{if } N'_{i,j} \geq N'_{k,j} \\ -\xi \beta_{j} \left(N'_{k,j} - N'_{i,j} \right)^{\eta_{2}} & \text{if } N'_{i,j} < N'_{k,j} \end{cases}$$

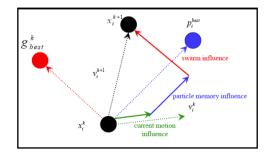
- **6** Calculating the final comparison score concerning each criterion $\sum_{i=1}^{m} CG_i(x)$
 - \longrightarrow $FS_j(a_i) = \sum_{k=1}^m CS_j(a_i, a_k)$
- 6 Determining the final ranking between alternatives

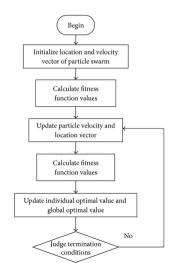
$$\rightarrow$$
 $\mathcal{R}(a_i) = \sum_{i=1}^{s} FS_i(a_i)$

Optimization module

Particle Swarm Optimization Algorithms

- Are distributed behavioral procedures
- Mimick the movements of a bird flock or a fish schooling that searches for food





are applied after standard PSO updates

- Arithmetic Crossover (PSO-AX)
 - Combines two randomly selected particles using a weighted average of their positions. Velocities are updated proportionally
- Novel Multi-Parent Crossover (PSO-NMPCO)
 Recombines three randomly selected particles using normalized random weights. If the offspring outperforms the parent, it replaces it
- **3** Blend Crossover (PSO-BLX- α)
 Uses the BLX- α operator to generate offspring within an extended range between two parents. Parent selection is based on roulette wheel selection
- 4 Parent-Centric Crossover (PSO-PCX)
 Generates offspring around a selected parent and the centroid of other parents using Gaussian perturbations

- **6** Randomized Parent-Centric Crossover (PSO-PCX $_r$, PSO-PCX $_r^*$) A variation of PCX where the parent to be mutated is selected randomly to enhance exploration. PSO-PCX $_r^*$ includes checks to ensure parent diversity.
- Objecte Crossover (PSO-DX)
 Applies discrete crossover between a particle's new position and:
 - its personal best (PSO-DX_y),
 - the global best (PSO-DX_ŷ),
 - ullet or a weighted combination of both (PSO-DX $_{y\hat{y}}$)

Implemented with either one-point or uniform recombination

6 Global Best-Centric Crossover (PSO-PCX $_{\hat{y}}$, **PSO-PCX** $_{\hat{y}}$) A PCX variant where the global best is always the mutated parent. PSO-PCX $_{\hat{y}}^*$ ensures parent diversity before applying crossover

Parent-Centric Crossover with Generalized Generation Gap (PSO-PSPG)

Applies PCX asynchronously with a crossover probability p_c . If not applied, standard PSO with constriction coefficient is used. The best individuals among parents and offspring are retained

Gaussian Mutation

Introduces stochastic perturbations to particle positions or velocities by sampling from a Gaussian distribution

Adaptive operator selector

Objective: dynamically manage the trade-off between exploration and exploitation during the execution of the algorithm

General Functioning:

- At each iteration, the controller selects the recombination operator to apply
- The selection is based on the historical performance of each operator with respect to:
 - Population quality (mean fitness)
 - Population diversity (entropy)

Main Components:

- **1** Aggregated Criteria Computation: tracks changes in fitness and entropy
- **2 Reward Computation:** assigns a reward to each operator based on its impact
- **3** Credit Assignment: aggregates rewards over time
- **Operator Selection:** chooses the next operator based on credit scores

Dealing with box and budget constraints

• Let $C \subseteq \mathbb{R}^K$ be given by

$$C = \left\{ \mathbf{w}^* \in \mathbb{R}^K \colon \mathbf{1}^\top \mathbf{w}^* = 1, \ 0 \le w_k \le 1 + s \text{ for } k \in \{1, \dots, n_{\mathsf{long}}\}, \right.$$
$$-s \le w_k \le 0 \text{ for } k \in \{n_{\mathsf{long}} + 1, \dots, K\}$$

where $\mathbf{w}^* \in \mathbb{R}^K$, with the first n_{long} components being the long leg and the last n_{short} being the short leg

Projection onto the intersection of the hyperplane and the box

$$P_C(\mathbf{w}^*) = P_{\mathsf{Box(s)}}(\mathbf{w}^* - \mu^* \mathbf{1})$$

where μ^* is a solution of the equation

$$\mathbf{1}^{\top} P_{\mathsf{Box}(\mathsf{s})}(\mathbf{w}^* - \mu \mathbf{1}) = 1$$

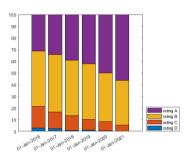
and
$$\mathsf{Box}(\mathsf{s}) = \left\{ \mathbf{y} \in \mathbb{R}^K \colon 0 \leq w_k \leq 1 + s \text{ for } k \in \{1, \dots, n_{\mathsf{long}}\} \right.$$
 and $-s \leq w_k \leq 0 \text{ for } k \in \{n_{\mathsf{long}} + 1, \dots, K\} \}$

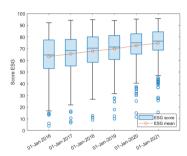
• Data type: daily closing prices and Refinitiv's ESG scores

Data set name	n stocks	Time window
STOXX Europe 600	435	01/07/2013 - 28/02/2020

- Refinitiv's ESG scores
 - → are presented as percentile rankings, with 100 representing the highest score and 0 the lowest
 - reflect the relative performance of ESG factors within the company's sector (for environmental and social aspects) and country of incorporation (for governance) and are updated monthly
- The market value-weighted index of the 435 stocks included in the investment universe as the proxy for the market

Analysis of ESG statistics





- The binding request of compliance to certain standards and the recent regulations have led to substantial ESG score improvements for securities in the European market over time
- Relying solely on ESG scores may lose its effectiveness as a tool for promoting the sustainability principles among financial actors
- Identifying portfolio allocations in assets that have a higher sustainability growth over time, even
 if with lower ESG scores, could be a more compliant strategy to leverage ESG information in
 allocation decisions

Investment plan

- Monthly rebalancing, out-of-sample window of 44 months from 29/07/2016 to 28/02/2020
- Cardinality parameter K=86 (corresponding to 20% of the investment universe) with $n_{\rm long}=n_{\rm short}=43$
- Leverage values $s \in \{0.10, 0.20, 0.30\}$
- Equal weighting scheme

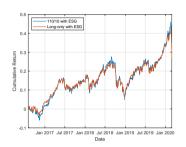
```
\stackrel{\leadsto}{\sim} long leg: w_{\text{long},i} = \frac{1+s}{n_{\text{long}}}
\stackrel{\leadsto}{\sim} short leg: w_{\text{short},j} = -\frac{s}{n_{\text{the short}}}
```

 No consideration given to transaction or margin costs (maintenance margins, interest payments)

Long/Short with ESG vs. Long/Short without ESG

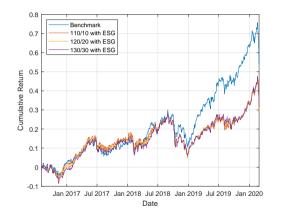
- Long/short strategies based on ESG criteria exhibit superior performance in 2017, regardless of the leverage level
- In 2018, long/short strategies with and without ESG integration exhibit comparable performance
- Over the past two years, strategies based solely on financial criteria have outperformed those incorporating ESG considerations

Long/Short with ESG vs. Long-only with ESG



- To compare performance under equal net exposure, we select the top $n_{\mathsf{long-only}} = \lfloor \frac{n_{\mathsf{long}}}{1+s} \rfloor$ stocks and assign them equal weights $w_{long-only,i} = \frac{1}{n_{\mathsf{long-only}}}$, setting all other weights to zero
- Leveraged strategies that incorporate ESG criteria still outperform their long-only counterparts
- Higher leverage amplifies differences in return peaks, whereas drawdowns remain broadly similar, with the exception of Q1 2017

Long/Short with ESG vs. Benchmark



- The long/short strategies are highly correlated; in particular, since July 2018, they have produced virtually identical ex-post results in terms of cumulative returns
- Until September 2018, they closely tracked the benchmark's behavior using 20% of its constituents, and often managed to outperform it
- After September 2018, the selection criteria have provided underperforming signals at the aggregate level

Conclusions and future research

- By using only the MCDM module for stock selection and adopting a completely uninformed weighting scheme, the trading system is able to generate value over time
- The study will now focus on:
 - implementing the developed metaheuristic to solve the Omega ratio maximization problem under long/short constraints
 - 2 investigating the predictive capabilities of the considered criteria/classifiers
 - 3 exploring alternative weighting methods for the TODIM approach
 - analyzing the strategy's sensitivity to portfolio cardinality and assessing the potential impact of transaction costs on ex-post performance

Thank you for your attention