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Aim of the work

®* Our aim is to exploit roads characteristics, traffic, socio-demographic local
data and the location of past accidents to estimate the risk of getting car
crashes for any edge of a (local or even nationwide) road network.

®* Possible benefits

* For policymakers: more efficient use of public resources to reduce the risk of accidents (i.e.
where is it necessary to invest?)

® For civil engineers: evidence of what are the main factors that may impact the risk of an
accident (i.e. are roundabouts riskier than traffic lightse)

®* For everyday use: which roads are safer?

* For insurance companies: how to link the risk of drivers’ trajectories to expected frequency
(blackboxes recordings are necessary)



Contribute to the literature and methods

® In particular we focus on “where policyholders drive”

We do not consider here (research is in progress) other features that can be detected by felematic data and that can affect
the risk as:

® Driving behaviour (see, e.g., Ayuso ef al. (2016), Gao and Wuthrich (2018), Arumugam, Bhargavi (2019), Gao and
Wuthrich (2019), Gao et al. (2019), Huang, Meng (2019), Narvaez et al. (2019), Wuthrich and Buser (2019), Gao, Meng,
Wuthrich (2022), Ziakopoulos et al. (2024), ...)

® Driving habits as KM, daytime, weather conditions, etc. (see, e.g., Ayuso et al. (2018), Verbelen et al. (2018), Perez-Marin
and Guillen (2019), Guillen et al. (2021))

®* We follow a combined approach:

A modification of the conditional autoregressive modelling (see Boulieri et al. (2016), Gilardi et al. (2022)) incorporating spatial
lagged effects, will be applied in order to assess the risk on the basis of a set of features related to the characteristics of the
streefs.

From the spatial object we build a weighted network, where vertices and arcs correspond to geographical elements as
junctions and roads and where the assessed risk of each segment is used as a weight.

A two-stage mixed geographically weighted Poisson regression (see Murakami et al. (2023), Briz-Reddn et al. (2019) Gomes et
al. (2017)) to unveil local heterogeneity.



Which “ingredients”
do we need ?

Road details (e.g. Open
Street Map)

Traffic source (e.g.
Google, other
providers)

Demographic database
(population density,
building density,
commuting people)

Region/municipality/ZIP
boundaries (from ISTAT,
other private sources)

Location of accidents
(e.g. from company,
open data)
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Main issues
related to data

Road details (e.g. Open Street Map)

* links details are often unbalanced because of missing information

* some very relevant details (i.e. number of crossings) are not available
and must be ad hoc estimated

=)

Traffic source (e.g. Google, other providers)
*  high quality open access data are barely available
. the size of datasets are in many terabytes even for short time periods

Demographic databases (population, building density,
commuting people)

* theyare not available at the link level but mainly at a small area level
Region/municipality/ZIP boundaries (from ISTAT, other sources)
* what is the optimal subregion to fit data?

Location of accidents (e.g. from company, open data)

* In general, dataset contains location of accidents.

*  Reverse geocoding (i.e. lat/long coordinates) algorithms are in some
cases necessary but often with limited precisions

The number of road crossings is not directly
available in the OSM database.

For each road, we computed it as the number of
segments that have in common one coordinate with
that road.

This method represents an approximation of the
true crossings (for instance, two roads at different
level one above the other through a bridge) but it
returns in general an estimate quite close to reality.

Coordinates of accidents are not always strictly in
line with a segment. Approximations are due to
proxies implicit into the reverse geocoding algorithm
or to errors in the registration of accident locations.
We project (orthogonally) that coordinates onto the
closest segment 5



The data
City of Milan and province

Data regard accidents that resulted in fatalities or injuries of # #
at least one person. We display below the location for Milan highway | highway # pedestrian | traffic| # car
and province id_link (type) (length) | URBAN | junctions | crossings | lights | crashes

1 Tertiary 119 Y 5 0 0 0
Secondary 309
Primary 11.3
Primary 11.3
Primary 150
Secondary 35.4
Secondary 67.9
Tertiary 97.7
Motorway 157
10 Other 150
For each OSM segment save/compute

O 0N OO B A W N
zzl<|<|lzi<x|<|z <
OO N B WD
O O O ON Kk ON
= O O WwW o krk O wo
= O W| 0= OIN|O|O

* Type of road (highway)

* Features (if available) e.g. surface, maxspeed, lit...

* Number of junctions (computed exogenously: proxy very close to reality)
*  Number of traffic lights

* Number of pedestrian crossings




The model
currently applied

We split the domain into subregions. We report the results obtained considering sub-areas
based on cities and also ZIP codes for Milan

We propose a method that combines Conditionally autoregressive models (CAR) with two
types of Spatial Lag Models (SLM and SLX)

e LetY = (Y,Ys,...,Y,)T be the vector of random variables (claim counts) observed in 7
different regions (in our case, links).

* In general the average count of a spatially dependent variable can be modeled as:
Yil{y;,j € N(i)}~Poisson(E;u;)
where N (i) is the neighbourhood of node i, E; is the exposure.



The model
currently applied

Considering n records (i.e. links) and k covariates,we set:

log(w) = (pWy + XB + WX(_1y1)

With:

W proximity matrix (spatial weight matrix)
P and 1 vectors of coefficients (fixed effect and spatial random effects)
X (—1) indicates the X matrix without the column associated to the intercept.

p spatial autocorrelation parameter



The model
currently applied

The expected count or intensity A is then obtained as:

log(4) = (I, — pW)‘l(XB + WX(_l)n) + of fset

W = [Wi’j] spatial weight matrix (n x n)
Elements w; ; are based on a bi-square kernel function (h=1km) (see Bidanset, Lombard

(2014)): (

di\*|
_ |2y -
Wi,j=<[1 <h>‘ dij <h

0 diJZhOT'i:j

\

Weights are then normalized to assure that the sum for row is equal to 1.

Offset: VehicleMilesTravelled (VMT) = #vehicles * length (total km fravelled for each segment) or length, if traffic is ¢
not available



To compute distances, we convert the street
network in a graph focusing on a “junction
graph” (see, e.g., Marshall et al., 2018), where
each segment is an arc and nodes are given by
junctions (or by termination of closed streets).

Formally, given the street network, we build a
graph G = (V;E) where V and E are
respectively the set of n vertices and m arcs.
Two nodes are adjacent if there is an arc
(i,j) € E (i.e. a road segment) connecting them

In particular, we consider at moment a
directed and weighted network
G, equal to G, where each arc is
weighted with the length of the
segment.

Distances
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Distances between two roads have been computed by adding centroid to each segment and by
computing the directed weighted shortest path between two centroids.

The shortest path problem is the problem of finding a path between two nodes in a graph such that the
sum of the weights of its constituent links is minimized:

dij = mln{ 2

(u,v €pP)

l(u,v)|P € P(i,j)}

Where:

l(u,v) is the length of the link connecting two neighbours u, v
P is a directed path from node i to node j, i.e. a sequence of directed links that allow to go fromi to j
P(i,j) is the set including all directed paths from i to j

11


https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#weighted_graph

Main results:
Model behaviour

Observed vs Fitted for City and Postal Code
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First results

Example of map of the risk Center of Milan
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Risk based on time

Boxplots by Year and Quarter

Risk wrt to time
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Exposure
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Complexity of the street

Distributions by Number of Crossroads

Boxplots by Speed Limit
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Density
Population and Buildings

Boxplots by Buildings' density
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Average Estimated Risk

Other characteristics
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GWPR

We consider the Geographically Weighted Poisson regression (GWPR):
E; exp (Zkﬁk (u;, v;) xik>]

GWPR estimates local coefficients by maximizing a locally weighted Poisson likelihood, where the
weights come from the bi-square function with bandwith h = h;

Y]-~Poisson

We apply a two stage GWP regression. A sketch is:

1. For each position lat-long, say u, select h; and fit a penalized GWPR model.

2. Divide the explanatory variables into X _, and Z, where Z contains the not significant
variables (irrelevant to the problem orlocal).

3. Apply a penadlized (not geographical) elastic net to Z. Let Q be the variables selected.
4. In case Q is not empty, fit a penalized mixed-GWPR with

log(p(w) = X—pB—n(w) + Q6

with geographical weights applied only to X_,

19



Distribution of estimates at the road level for various features. Included are distributions
solely for features demonstrating a non-zero modal value or displaying considerable
skewness, highlighting their discernible patterns within the dataset
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Relevance of features at zone level
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Choropleth maps depicting the varying contributions of two distinct features to the risk

assessment across different areas.
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Conclusions

The proposed approach exploits the use of open-source data
to estimate the risk related to where the policyholder drives.

It is a work in progress and several points are under
investigation. At moment, we are evaluating the possibility of:
— Validating the model using fraining and testing
— Consider time dependence (scarcity of data per time unit might be present)
— Testing Graph Neural networks including spatial dependence
— Evaluating which improvements these results can offer for insurance pricing.
— Improving results using other data (e.g. average speed per link)
— Testing the model using data of other countries
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Validation procedure: frain/testing
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Additional aspects based on network theory

We deal now with two types of
network: | TR iy
« G = (V;E) an unweighted 7!
network with n nodes ) 5
(junctions/road terminations) and ‘
m arcs (road segments) o : b o
« G, = (V;E;W) a weighted | v B T i1
network equal to G, where each arc | A -
is weighted according to the risk of 3 7y v . plre
the segment detected at previous ' AR A
step. : >
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Risk vs centrality

. We focus here on the topology of the network, assessing the global importance of network elements.

. In particular, focusing on road segments and junctions, the node and edge betweenness appears as key
indicators for this context. The node betweenness is a function of the number of shortest paths between pairs of
nodes that pass through that node (see Newman, Girvan, 2004):

b = N (D)
L

n
nkev Tk
htk#i

where ny ,is the number of shortest paths between h and k and ny, , (i) is the number of shortest paths between h and
k that passes through the node i. A similar definition can be provided in case of edges.

. Since the computation on the whole network G is really time consuming and does not provide significant value
added, we considered separately nodes in the sub-graphs G, based on the splitting of the whole network
according to cities and zip codes.
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Risk vs centrality

Caoarrelation between risk and centrality
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