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Introduction

Rationale behind the model

Insurance regulations, such as Solvency II in the European Union and the
Swiss Solvency Test, require insurance companies to set aside capital to
protect themselves against unexpected losses over a defined solvency horizon.

Risk over this horizon is typically measured using Value-at-Risk (VaR) or
Conditional Value-at-Risk (CVaR).

When computing capital requirements, investments in financial markets
must be considered to accurately assess the insurer’s financial position at
the end of the solvency horizon.

The risk budgeting approach enables the selection of portfolios in which the
risk contribution of each asset is predetermined. It has low sensitivity to
input parameter perturbations and often outperforms traditional strategies.

The proposed model integrates risk budgeting with capital requirement
computation for non-life insurers.
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Modelling framework

Insurer’s net loss over the solvency horizon τ

Consider a probability space (Ω,F ,P) and n financial assets. Let Z
denote the insurer’s liability over τ , and let R = (R1, . . . ,Rn)

⊤ be the
vector whose ith component, Ri , represents the gross return over τ
for the ith asset.

The insurer’s net loss over the solvency horizon is given by

L(c , x) = Z − (p + c)R⊤x,

where:

p is the premium collected from policyholders at the inception of the
horizon, which is available for investment;
c is the solvency capital that must be determined at the beginning of τ
to satisfy a regulatory constraint;
x = (x1, . . . , xn)

⊤ represents the portfolio weights, with xi denoting the
proportion invested in the ith asset.
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Modelling framework

Computation of x and c

We consider the following optimization problem:

min
x,c

c

s.t. CVaRα(L(c , x)) ≤ 0,

x ≥ 0, 1⊤x = 1,

c ≥ 0.

Instead of computing the optimal pair (x∗, c∗) simultaneously, as in
Asanga et al. 2014 and Staino et al. 2023, we decompose the problem
of determining the portfolio weights x∗ and the capital c∗ into two
stages:

First, we determine the portfolio weights x∗ by applying risk budgeting
conditions to the CVaR of the negative portfolio log-return.
Then, given x∗, we compute the capital requirement c∗ such that the
CVaR of L does not exceed zero.
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Modelling framework Risk Budgeting Approach

Risk budgeting approach

Given the relative risk budgets b1, . . . , bn such that bi > 0, for i = 1, . . . , n,
and

∑n
i=1 bi = 1, the risk budgeting portfolio x∗ is given by

x∗i =
y∗
i∑n

i=1 y
∗
i

, i = 1, . . . , n.

where y∗ is the solution of

min
y

CVaRα

(
−

n∑
i=1

yi log(Ri )

)

s.t.
n∑

i=1

bi ln yi ≥ 0.

The portfolio x∗ satisfies the risk budgeting constraints:

bi CVaRα

(
−

n∑
i=1

x∗i log(Ri )

)
= x∗i

∂

∂xi
CVaRα

(
−

n∑
i=1

x∗i log(Ri )

)
,

for i = 1, . . . n.
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Modelling framework Risk Budgeting Approach

Risk budgeting approach (cont’d)

For an integrable random loss L, we have

CVaRα(L) =
1

1− α

∫ 1

α

VaRt(L)dt = inf
s∈R

{
s +

1

1− α
E
[
(L− s)+

]}
.

To compute y∗, we generate m scenarios rj = (r1,j , . . . , rn,j)
′ of the asset

gross returns and solves the optimization problem

min
s,y

s +
1

m(1− α)

m∑
j=1

(
ℓ(j)(y)− s

)
+

s.t.
n∑

i=1

bi ln yi ≥ 0,

where ℓ(j)(y) = −
∑n

i=1 yi log(ri,j) is the jth loss scenario.

Given y∗, we rescale it to obtain the optimal portfolio weights x∗ for the
relative risk budgets b1, . . . , bn.
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Modelling framework Optimal capital requirement

CVaR regulatory constraint

The CVaR regulatory constraint requires that the CVaR at level α of the
insurer’s net loss over the solvency horizon be less than or equal to zero:

min
c

c

s.t. CVaRα(L(c , x
∗)) ≤ 0,

c ≥ 0.

To solve this problem, we use the same m scenarios rj = (r1,j , . . . , rn,j)
⊤ of

the asset gross returns previously employed to compute the risk budgeting
portfolio x∗ and resort to the semiparametric formulation proposed by
Asanga et al. 2014:

min
s,c

c

s.t. s +
1

m(1− α)

m∑
j=1

E
[(
Z − (p + c)R⊤x∗ − s

)
+

∣∣∣R = rj
]
≤ 0,

c ≥ 0.
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Modelling framework Optimal capital requirement

CVaR regulatory constraint (cont’d)

Assuming Z to be independent of R yields

min
s,c

c

s.t. g(s, c) ≤ 0,

c ≥ 0.

where

g(s, c) = s +
1

m(1− α)

m∑
j=1

E
[(
Z − (p + c)r⊤j x

∗ − s
)
+

]
,

which is a convex function.

This optimization problem can be solved with the Kelley-Cheney-Goldstein
(KCG) cutting-plane algorithm.
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Modelling framework Optimal capital requirement

Liability modelling

We have g(s, c) = s + 1
m(1−α)

∑m
j=1 h

(
(p + c)r⊤j x

∗ + s
)
, where

if Z is lognormally distributed:

h(l) =


exp

(
µ+

σ2

2

)
− l , l ≤ 0,

exp

(
µ+

σ2

2

)
Φ

(
µ− ln(l) + σ2

σ

)
− lΦ

(
µ− ln(l)

σ

)
, l > 0.

if Z is gamma distributed:

h(l) =

{
kθ − l , l ≤ 0,

kθ [1− FG (l ; k + 1, θ)]− l [1− FG (l ; k, θ)] , l > 0.

if Z is distributed as a mixture of Erlang distributions with a common scale
parameter:

h(l) =


θ

m∑
i=1

αiki − l , l ≤ 0,

m∑
i=1

αi {kiθ [1− FG (l ; ki + 1, θ)]− l [1− FG (l ; ki , θ)]} , l > 0.
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Empirical analysis

Financial data

We consider portfolios composed of the S&P 500 index, the iShares Barclays
1-3 Year Treasury Bond ETF (SHY), and the iShares iBoxx $ Investment
Grade Corporate Bond ETF (LQD).

Daily prices from January 2010 to December 2020, for a total of 2768
observations, are used to compute daily log-returns.

The resulting daily log-returns are divided into two samples:

Sample A includes data from January 2010 to December 2015 (the
first six years);
Sample B includes data from January 2016 to December 2020 (the last
five years) and is used for out-of-sample analysis.

Asset Min. Max. Mean S.D. Skewness Kurtosis

S&P 500 -0.12765 0.08968 0.00043 0.01106 -0.86342 19.33641
SHY -0.00439 0.00544 0.00005 0.00059 0.53278 9.60533
LQD -0.05132 0.07131 0.00024 0.00448 0.32077 58.12501

Table: Descriptive statistics about daily log-returns from January 2010 to December 2020 for
the assets S&P 500, SHY, and LQD.
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Empirical analysis

Insurer’s liability data

We use the dataset danishuni from the R package CASdatasets Dutang and
Charpentier 2020, which contains 2167 fire losses (in millions of Danish
krone) from January 1980 to December 1990, adjusted for inflation to
reflect 1985 values.

We convert these losses to millions of U.S. dollars, aggregate them monthly,
and apply the annual inflation index so that: the first monthly loss reflects
January 2010 values, the second reflects February 2010 values, and so on, up
to the last monthly loss, which reflects December 2020 values.

The resulting monthly losses are split into two samples: Sample A′ contains
data from January 2010 to December 2015; Sample B ′ contains data from
January 2016 to December 2020.

Min. Max. Mean S.D. Skewness Kurtosis

3.59614 69.15245 13.88274 9.52692 3.50261 19.23287

Table: Descriptive statistics about the data set danishuni of the R package CASdatasets of
Dutang and Charpentier (2020) after some adjustments to have monthly losses in millions of
U.S. dollars and concerning the period January 2010 - December 2020.
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Empirical analysis

Parameter estimation for the liability distributions

We use the maximum likelihood estimator (MLE) for the three theoretical
distributions.

For the mixture of Erlang distributions with a common scale parameter, we
apply the approach proposed by Lee and Lin 2010, who developed a
modified expectation-maximization (EM) algorithm.

Lognormal
µ̂ σ̂ Log L KS test

2.3548 0.5253 225.3566 0.0612
(0.0619) (0.0438) (0.9350)

Gamma
k̂ θ̂ Log L KS test

3.3735 3.6486 231.4724 0.1033
(0.5375) (0.6269) (0.3993)

Mixture
α̂1 α̂2 k̂1 k̂2 θ̂ Log L KS test

0.9861 0.0139 5 33 2.2840 221.7991 0.0700
(0.2028) (0.0020) (0.1561) (0.8478)

Table: Parameter estimates of the three distributions considered, based on Sample A′.
The losses in Sample A′ are adjusted to reflect year-2015 values.
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Empirical analysis
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Figure: Histogram of the log-transformed data for Sample A′ with the addition of
the theoretical curves. The losses in Sample A′ are adjusted to reflect year-2015
values.
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Empirical analysis

Strategy to compute x∗ and c∗

We use α = 99% as the confidence level for CVaR.

We set τ = 21 days as the solvency horizon, since the observed losses are on
a monthly basis.

At any date t, where an optimal decision (x∗, c∗) must be made, we apply
the following strategy:

1 Estimate the liability parameters for the three theoretical distributions unsing
MLE.

2 Apply the expected premium principle to compute the insurance premium:
p = (1 + η)E[Y ], where the relative security loading factor η is 0.1.

3 Generate m = 10000 scenarios rj , j = 1, . . . ,m, for asset gross returns using
the moment-matching method of Høyland, Kaut, and Wallace 2003.

4 Compute the portfolio weights x∗ that satisfy risk budgeting parity, i.e.,
bi = 1/3 for i = 1, 2, 3.

5 Compute the optimal required capital c∗ that ensures satisfaction of the
CVaR regulatory requirement.
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Empirical analysis

Values of x∗ and c∗ for Samples A and A′

S&P 500 SHY LQD

c∗ x∗1 x∗2 x∗3

Lognormal
29.987 0.0534 0.8441 0.1025
(29.825) (0.4341) (0) (0.5659)

Gamma
23.970 0.0534 0.8441 0.1025
(23.842) (0.3682) (0) (0.6318)

Mixture
67.614 0.0534 0.8441 0.1025
(67.229) (0.7383) (0) (0.2617)

Table: Values of the optimal capital requirement c∗ and the risk parity weights
x∗. The values in brackets are those obtained with the model proposed by Staino
et al. 2023. Computations are based on Sample A for asset log-returns and
Sample A′ for the insurer’s liability. The losses in the sample A′ are adjusted to
reflect 2015 values.
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Empirical analysis

Out-of-sample analysis

Using Samples A and A′, we first compute the optimal solution (c∗0 , x
∗
0) for

the period [0, τ ] by applying Steps 1-5 detailed above.

We construct a new sample for asset log-returns by removing the first
month’s observations from Sample A and including those of the first month
from Sample B, i.e., we carry out monthly portfolio rebalancing.

For the insurer’s liabilities, we build the new sample by retaining all
observations from Sample A′ and adding the first observation from Sample
B ′. We then adjust the losses in this updated sample to reflect values for
the year of the most recent loss, which is 2016 in this case.

Given the new samples for asset log-returns and losses, we recompute the
optimal solution (c∗τ , x

∗
τ ) for the next period [τ, 2τ ] by reapplying Steps 1–5.

By repeating the sampling and optimization procedures until the end of
Samples B and B ′, we obtain a sequence of optimal solutions (c∗kτ , x

∗
kτ ), for

k = 0, 1, . . . ,K − 1, where K is the length of Sample B ′.
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Empirical analysis
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Figure: Optimal total investments pkτ + c∗kτ , k = 0, 1, . . . ,K − 1.
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Empirical analysis
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Figure: Optimal asset allocations x∗k , k = 0, 1, . . . ,K − 1, with risk parity.
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Empirical analysis
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Figure: Optimal asset allocations x∗k , k = 0, 1, . . . ,K − 1, without risk parity.
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Empirical analysis
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Figure: Realized insurer’s wealth, (pkτ + c∗kτ )r
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∗
kτ − zk+1, k = 0, 1, . . . ,K − 1,

at the end of each month.
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Conclusions

Conclusions

The proposed model integrates a risk budgeting approach for asset portfolio
selection with the computation of the solvency capital requirement for
non-life insurance.

The CVaR risk measure is employed both for the computation of risk parity
portfolios and for determining the minimum capital that fulfils the solvency
requirement.

The analysis shows how the solvency capital requirement can be calculated
under several loss distributions.

The analysis does not aim to prove that one loss distribution is better than
another. It simply shows that, for the considered dataset and with an
expanding-window sampling of the insurer’s losses, the Erlang mixture
distribution can provide better protection compared to the lognormal and
gamma distributions. However, this greater protection comes at a higher
cost.
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Thank you for your attention!
Questions or comments are welcome.
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