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I. Introduction

Long-term investments or retirement-designed innovations

Global appeal of variable annuities (VAs)→ potential for enhanced
investment outcomes through equity participation.

Notable minimum guarantee riders:
- death benefits (GMDB),
- maturity benefits (GMMB),
- accumulation benefits (GMAB),
- income benefits (GMIB),
- and withdrawal benefits (GMWB)
see Hardy (2003) and Ledlie et al. (2008) for a comprehensive
discussion.

Total annuity sales: $385 billion in 2023 (LOMA Secure Retirement
Institute).
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I. Introduction

Some literature on pricing & hedging guaranteed-maturity riders

Accurate valuation, understanding risks, and hedging - prime importance
to insurers and regulators.

GMDB: risk-neutral valuation (Milevsky & Posner, 2001); discounted den-
sity approach (Gerber et al., 2012); PDE-based method (Belanger et al.,
2009); numerical-integration-based approach with surrender options (Shen
et al., 2016)

GMMB: regime-switching and stochastic mortality set up (Ignatieva et al.,
2016); VIX-linked fee structure under a Heston volatility model (Cui et al.,
2017).

GMAB: three correlated risk factors (Huang et al., 2022)

GMWB: pricing/hedging - financial economic perspective (Hyndman and
Wenger [15]); valuation with step-up, bonus and surrender features in a
low interest rate environment (Fontana and Rotondi, 2023).
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I. Introduction

Aims: GMIB pricing and risk analysis

GMIB is an attractive investment feature to policyholders. Reasons are:

(i) Protection against longevity risk
GMIB transfers longevity risk to insurers - option to convert retirement savings
into a life annuity.

(ii) Provision of stable payments irrespective of market performance
GMIB ensures a guaranteed minimum income upon annuitisation, shielding poli-
cyholders from adverse impact of market conditions with a steady income stream
during retirement.

(iii) Equitable market participation, with downside protection
Policyholders can capitalise on equity market growth and benefit from the secu-
rity of a guaranteed minimum level of annuity payments.

(iv) Transparency
Predetermined guaranteed minimum payments at each age, making retirement
planning endeavours simple.
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I. Introduction

Comparable product existing in European market

GMIB versus Guaranteed Annuity Option (GAO)

There are similarities between GAO and GMIB.

GAO’s pricing and hedging have been extensively explored (e.g., Boyle
& Hardy (2003); Liu et al. (2013 & 2014); Ballotta and Haberman
(2003); Pelsser (2003); and Zhao et al. (2018), amongst others.)

Both GAO and GMIB offer a guaranteed conversion rate upon annuiti-
sation.

GMIB distinguishes itself from the GAO in terms of product design and
benefit structure.

Principles under GAO’s analysis cannot be readily extrapolated to the
GMIB.

For this reason, a distinct and targeted study is warranted specifically
for the GMIB.
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I. Introduction

Some current literature on GMIB pricing

Bauer et al. (2008) - a general framework for a variety of VA
guarantees, with models for: investment (GBM) and mortality (de-
terministic).

Marshall et al. (2010) - Hull-White interest rate dynamics, with
GMIBs contract designs priced in a complete market covering fi-
nancial risks but not mortality.

However, GMIB has a life-related annuity; thus, longevity risk,
which is a non-diversifiable risk cannot be ignored.

Deelstra and Raye (2013) - valuation in a local volatility model;
survival rates based on a mortality table. But, mortality need to be
stochastic to capture long-run uncertainty (esp. maturities > 10
years).
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I. Introduction

Stochastic mortality models & dependence of risk factors

Evolution of some well-known mortality models
– one-parameter model for trends observed in U.S. population data (Lee &
Carter, 1992)
– evaluation of eight stochastic models at advanced ages (Cairns et al., 2009)
– affine model calibration to different generations of UK population (Luciano &
Vigna, 2008)
– mean-reverting models, with variable target for age-related increase in mor-
tality, outperform non-mean reverting models (Zeddouk & Devolder, 2020).

Prevalent assumption! independence of mortality risk from interest risk.
– within risk-neutral domain, such assumption is frequently unattainable (Dhaene
et al., 2013)
– mortality influenced the economy subsequently impacting interest rate (Mil-
tersen and Persson, 2005 & Liu et al., 2014)
– implications of dependence between mortality and interest risks on insurance
prices (Deelstra et al., 2016).

There is merit to a mathematical framework for dependence structure between
financial and mortality risks.
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I. Introduction

Key contributions of this research

(i) Further developments in constructing equivalent martingale measures [some
parallels to Dahl and Miller (2006)].

(ii) GMIB rider with correlated stochastic interest and mortality rates extending
Bauer et al. (2008) and Marshall et al. (2010).

(iii) With endowment-risk-adjusted measure, analytical solution for GMIB is
derived for 2 Benefit Base function scenarios.

(iv) Remarkably accurate GMIB prices obtained with significantly reduced com-
putation time vis-á-vis results from standard Monte Carlo simulation.

(v) Comprehensive assessment of various risk factors’ impact on GMIB value.

(vi) Flexibility of modelling framework along with change of numéraire approach
for other types of guarantee riders - practical utility in insurance industry.
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II. Modelling framework

Uncertainty risks affecting GMIB

Three uncertainty risks:

interest rate rt (e.g., drt = a∗ (θ∗(t)− rt) dt + σ∗1dXt .)

mortality intensity µt : (modelled similarly by some stoch process with
starred parameters)

investment fund St : (also modelled by a certain stoch process with
starred parameters)

They are defined on (Ω,F , {Ft},P), where
{Ft} is the joint filtration generated by rt , µt , and St ,
with P being an objective probability measure.

Note:Procedure for effectuating change of measure from P to a
risk-neutral measure Q was developed based on the methodology of Dahl
and Moller (2006), and hopefully could be shown if time permits (end of
this slide presentation).
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II. Modelling framework III.1 Interest rate model

The interest rate model

Under Q, the process rt follows the Hull-White model

drt = a(θ(t)− rt)dt + σ1dXt . (1)

In (1), a > 0 and σ1 > 0, θ(t) is deterministic describing initial interest rate’s term structure,
and Xt is a standard Brownian motion (BM).

The price B(t,T ) of a T -maturity zero-coupon bond at time t < T is

B(t,T ) = EQ
[
e−

∫ T
t rudu

∣∣∣Ft

]
= e−A(t,T )rt+D(t,T ), (2)

where

A(t,T ) =
1− e−a(T−t)

a
(3)

and

D(t,T ) = −
∫ T

t

(
1− e−a(T−u)

)
θ(u)du

+
σ2

1

4a3

[
2a(T − t)− 3 + 4e−a(T−t) − e−2a(T−t)

]
. (4)
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II. Modelling framework III.2 Mortality rate model

The mortality rate model

µx ,t := time-t force of mortality of an individual aged x at time 0.

µx ,t is specified by

dµx ,t = c (ξ(t)− µx ,t) dt + σ2dYt , (5)

where c > 0 and σ2 > 0, ξ(t) is deterministic, and Yt is a standard BM.

Parameters in (5) could be set such that probability for µx ,t to ever become
negative is minimised.

Xt and Yt are correlated, i.e. dXtdYt = ρdt.

Following Zedouk and Devolder (2020), ξ(t) conforms to Gompertz function,
i.e., ξ(t) = peht . Mortality intensity exponentially grows with advancing age;
p = baseline mortality at age x and h = senescent component. To streamline
notation, the age index x is omitted.

Model justification: See Luciano & Vigna (2008) - insignificant prob of neg
rates; and Costabile et al. (2025) - truncated at 0 when rates are neg.
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II. Modelling framework III.3 Investment fund model

The investment fund model

The investment fund St of a VA has geometric BM dynamics:

dSt = rtStdt + σ3StdZt , (6)

where σ3 > 0, and Zt is a standard BM independent of Xt and Yt .

To ensure a consistent correlation matrix for simulation and other fi-
nancial modelling purposes, the following relation dynamics must be
satisfied:

dXt = dW 1
t , dYt = ρdW 1

t +
√

1− ρ2dW 2
t , and dZt = dW 3

t ,

where W 1
t , W 2

t and W 3
t are independent standard BMs.
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III. GMIB contract description

Specifications and features of GMIB product

(i) VA with maturity T , initial premium P0 invested in St . (ii) Policyholder’s
fund Ft , held in a separate account, is linked to performance of St . (iii)
Continuously compounded management charge rate α. So,

Ft = F0
St
S0

e−αt ,

where F0 = S0 = P0. By Itô’s lemma, policyholder’s fund Ft satisfies

dFt = (rt − α)Ftdt + σ3FtdW
3
t . (7)

GMIB rider - offers guaranteed annuitisation rate g , an annual income
amount per unit of a lump sum. At date T , if g is better than prevailing
market annuitisation rates, option to utilise GMIB rider is triggered. A
predetermined minimum sum of funds, called benefit base for a life annuity
at rate g .

GMIB is a survivor benefit, i.e., annuitisation does not occur if policyholder’s
demise occurs before T .
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III. GMIB contract description

Specifications: GMIB product (cont’d)

BBT := Benefit Base if policy matures at time T . Two variations are
adopted.

Benefit Base I: growth at a guaranteed rate δ (a roll-up feature); so

BBT = P0e
δT .

Benefit Base II: incorporates discrete lookback feature (i.e., a step-up
guarantee). Let 0 = t1 < t2 < · · · < tm = T be some pre-selected
policy anniversaries. Benefit Base II is of the form

BBT = max
(
P0e

δT ,Ft1 ,Ft1 , . . . ,Ftm

)
.

Locks in gains when investment returns are strong during accumulation
phase.
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III. GMIB contract description

Specifications: GMIB product (cont’d)

M(t,T ∗) : time t value of $1 pure endowment payable at T ∗. Thus,

M(t,T ∗) = EQ

[
e−

∫ T∗
t rudue−

∫ T∗
t µudu

∣∣∣∣Ft

]
.

n-year term life annuity is the sum of pure endowments; that is,

äx+T :n =
n−1∑
k=0

M(T ,T + k).

Assume no lapse risk for now. GMIB payoff at T , conditional on policyholder’s
survival is

max(BBTgäx+T :n − FT , 0).

Consequently, GMIB’s fair value at time t is

PGMIB(t) = EQ
[
e−

∫ T
t rudue−

∫ T
t µudumax(BBTgäx+T :n − FT , 0)

∣∣∣Ft

]
. (8)
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IV. The GMIB value via a reference probability measure changes

The GMIB analytical price representation

We employ the change of measure technique to carry out the pricing
evaluation of the GMIB.

This is accomplished by introducing the forward measure to obtain
a closed-form solution for the pure endowment M(t,T ).
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IV. The GMIB value via a reference probability measure changes IV.1 Forward measure

The forward measure

Bond price B(t,T ∗) is a numéraire associated with forward measure Q̃ equivalent to risk-
neutral measure Q via

dQ̃

dQ

∣∣∣∣∣
FT∗

= Λ1
T∗ :=

e−
∫ T∗

0 ruduB(T ∗,T ∗)

B(0,T ∗)
.

By Bayes’ rule for conditional expectation,

M(t,T ∗) = EQ

[
e−

∫ T∗
t rudue−

∫ T∗
t µudu

∣∣∣∣Ft

]
= B(t,T ∗)EQ̃

[
e−

∫ T∗
t µudu

∣∣∣∣Ft

]
= B(t,T ∗)S(t,T ∗). (9)

Our calculations show
dΛ1

t = −σ1A(t,T ∗)Λ1
tdW

1
t .

By Girsanov’s Theorem, W̃ 1
t and W̃ 2

t are standard BMs under Q̃,

dW̃ 1
t = dW 1

t + σ1A(t,T ∗)dt and dW̃ 2
t = dW 2

t .
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IV. The GMIB value via a reference probability measure changes IV.1 Forward measure

The forward measure (cont’d)

Q̃ dynamics of rt and µt :

drt = [aθ(t)− σ2
1A(t,T ∗)− art ]dt + σ1dW̃

1
t ,

dµt = [cpeht − ρσ1σ2A(t,T ∗)− cµt ]dt + σ2

(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
. (10)

Eq. (10) is solved by variation of constants; note

∫ T∗

t
µudu conditional on Ft is

normally distributed with deterministic mean m1 and variance v1.

We obtain

S(t,T ∗) = EQ̃

[
e−

∫ T∗
t µudu

∣∣∣∣Ft

]
= e−m1+ 1

2
v1 = e−µt G̃(t,T∗)+H̃(t,T∗), (11)

where G̃ (t,T ∗) and H̃(t,T ∗) are deterministic.

Therefore, pure endowment has closed-form expression

M(t,T ∗) = e−(A(t,T∗)rt+G̃(t,T∗)µt)+D(t,T∗)+H̃(t,T∗). (12)

Consequently, term annuity factor is

äx+T :n =
n−1∑
k=0

M(T ,T + k) =
n−1∑
k=0

e−(A(T ,T+k)rT +G̃(T ,T+k)µT )+D(T ,T+k)+H̃(T ,T+k).

(13)
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IV. The GMIB value via a reference probability measure changes IV.2 Endowment-risk-adjusted measure

The endowment-risk-adjusted measure

Consider M(t,T ) as numéraire (linked to endowment-risk-adjusted measure Q̂)
defined via

dQ̂

dQ

∣∣∣∣∣
FT

= Λ2
T :=

e−
∫ T

0 rudue−
∫ T

0 µuduM(T ,T )

M(0,T )
.

By Bayes’ rule, equation (8) is

PGMIB(t) = EQ
[
e−

∫ T
t rudue−

∫ T
t µudumax(BBTgäx+T :n − FT , 0)

∣∣∣Ft

]
= M(t,T )EQ̂ [max(BBTgäx+T :n − FT , 0)|Ft ] . (14)

For BBT = P0e
δt , the expectation in (14) relies solely of rT , µT and FT .

For Benefit Base II, BBT = max(P0e
δt ,Ft1 ,Ft2 , · · · ,Ftm), the expectation in

(14) depends on rT , µT , Ft1 , Ft2 ,· · · , Ftm , noting that tm = T .

Understanding of Q̂-dynamics governing rt , µt and Ft is essential.

(12-13 June 2025) GMIB valuation via a numéraire approach 20 / 43



IV. The GMIB value via a reference probability measure changes IV.2 Endowment-risk-adjusted measure

The endowment-risk-adjusted measure (cont’d)

Write Λ2
t :=

YtMt

M(0,T )
, where

Yt = e−
∫ t

0 ruduB(t,T ) and Mt = e−
∫ t

0 µuduS(t,T ).

Using Itô’s lemma,

dYt =− σ1A(t,T )YtdW
1
t , and

dMt =− ρσ1σ2A(t,T )G̃ (t,T )Mtdt − ρσ2G̃ (t,T )MtdW
1
t −

√
1− ρ2σ2G̃ (t,T )MtdW

2
t .

Dynamics of Λ2
t :

dΛ2
t = d

(
YtMt

M(0,T )

)
= −Λ2

t

[(
σ1A(t,T ) + ρσ2G̃ (t,T )

)
dW 1

t

+
√

1− ρ2σ2G̃ (t,T )dW 2
t

]
. (15)

Girsanov’s Theorem justifies that Ŵ 1
t , Ŵ 2

t and Ŵ 3
t are standard Q̂-BMs:

dŴ 1
t = dW 1

t +
(
σ1A(t,T ) + ρσ2G̃ (t,T )

)
dt, dŴ 2

t = dW 2
t +

√
1− ρ2σ2G̃ (t,T )dt,

and dŴ 3
t = dW 3

t .
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IV. The GMIB value via a reference probability measure changes IV.3 GMIB valuation formula

Valuation formula: preliminaries

Respective Q̂-dynamics of rt , µt and Ft are given by

drt =
[
aθ(t)− σ2

1A(t,T )− ρσ1σ2G̃ (t,T )− art
]
dt + σ1dŴ

1
t , (16)

dµt =
[
cpeht − ρσ1σ2A(t,T )− σ2

2G̃ (t,T )− cµt
]
dt + ρσ2dŴ

1
t

+
√

1− ρ2σ2dŴ
2
t , (17)

dFt = (rt − α)Ftdt + σ3FtdŴ
3
t . (18)

RVs r , µ and Y are normally dstributed with deterministic moments for u > t:
mr (t, u), σr

2(t, u), mµ(t, u), σµ
2(t, u), mY (t, u), and σY

2(t, u).

From their dynamics and conditional on Ft , {rT , µT , Yt, T} follows a trivariate
normal distribution.

Hence, the pertinent expectation involving {rT , µT , Yt, T}, can be computed
efficiently.
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IV. The GMIB value via a reference probability measure changes IV.3 GMIB valuation formula

GMIB under Benefit Base I

Theorem 1

The GMIB value under Benefit Base I at time t ≤ T is

P
(I )
GMIB(t) = M(t,T ) ×

EQ̂

[
max

(
gP0e

δT
n−1∑
k=0

e−(A(T ,T+k)rT +G̃(T ,T+k)µT )+D(T ,T+k)+H̃(T ,T+k) − Fte
Yt, T , 0

)∣∣∣∣∣Ft

]
,

(19)

where the pure endowment M(t,T ) is defined in equation (12).

Moreover, the conditional distribution of {rT , µT , Yt, T} given Ft is a trivariate nor-
mal with (deterministic) parameters:

EQ̂ [rT |Ft ], EQ̂ [µT |Ft ], EQ̂ [Yt, T |Ft ], VarQ̂ [rT |Ft ],

VarQ̂ [µT |Ft ], VarQ̂ [Yt, T |Ft ], CovQ̂ [rT , µT |Ft ],

CovQ̂ [rT ,Yt, T |Ft ], and CovQ̂ [µT ,Yt, T |Ft ].
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IV. The GMIB value via a reference probability measure changes IV.3 GMIB valuation formula

GMIB under Benefit Base II

Recall: BBT = max(P0e
δt ,Ft1 ,Ft2 , · · · ,Ftm). Equation (14) is dependent only on rT , µT , and

Fti . Define the index set It = {j : j = 1, 2, · · · ,m, tj > t} and It = {j : j = 1, 2, · · · ,m, tj ≤ t}.
So, Fti = Fte

Yt, ti , i ∈ It .

Theorem 2

The GMIB value under Benefit Base II at time t ≤ T is

P
(II )
GMIB(t) = M(t,T ) ×

EQ̂

[
max

{
g max

(
P0e

δT ,max
i∈It

Fti ,max
i∈It

Fte
Yt, ti

)

×
n−1∑
k=0

e−(A(T ,T+k)rT +G̃(T ,T+k)µT )+D(T ,T+k)+H̃(T ,T+k) − Fte
Yt, T , 0

}∣∣∣∣∣Ft

]
, (20)

where {rT , µT , Yt, ti}, for i ∈ It conditional on Ft has a multivariate normal distribution with
(deterministic) parameters:

EQ̂ [rT |Ft ], EQ̂ [µT |Ft ], EQ̂ [Yt, ti |Ft ], VarQ̂ [rT |Ft ], VarQ̂ [µT |Ft ], VarQ̂ [Yt, ti |Ft ],

CovQ̂ [rT , µT |Ft ], CovQ̂ [rT ,Yt, ti |Ft ], and CovQ̂
[
Yt, ti ,Yt, tj

∣∣Ft

]
.
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V. Numerical illustration V.1 The becnhmark

The benchmark: Standard MC (Glasserman, 2004 & Kroese et al., 2013)

1 Generate j sequences of independent standard normals {ε1,j
ui , ε

2,j
ui , ε

3,j
ui }, i =

1, 2, . . . , k , for k sub-intervals in each j − th sequence and j = 1, 2, . . . ,N.

2 Generate the j-th-sample path (j = 1, 2, . . . ,N) of rt , µt and Ft according to
the Euler-Maruyama discretisation, respecting the correlation structure.

3 The j-th GMIB value is

P j
GMIB(t) = e−D

j
r e−D

j
µmax(BB j

Tgäx+T :n
j − F j

T , 0)

for numerically computed discounted factors D j
r and D j

µ.

4 Approximate the GMIB value by

PGMIB(t) ≈ 1

N

N∑
j=1

P j
GMIB(t),

and report the standard error.
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V. Numerical illustration V.2 The proposed approach

The proposed approach

Generate N sequences: trivariate normals {r jT , µ
j
T , Y

j
t, T}, j = 1, 2, . . . ,N.

With M(t,T ) having a closed form (12), the j-th GMIB values for
Bases I and II based on Theorems 4.1 and 4.2., respectively, are:

P
(Base I),j
GMIB

(t) = M(t,T )

× EQ̂

[
max

(
g P0e

δT
n−1∑
s=0

e−(A(T ,T+s)r jT +G̃(T ,T+s)µj
T )+D(T ,T+s)+H̃(T ,T+s) − Fte

Y j
t, T , 0

)]
;

P
(Base II),j
GMIB (t) = M(t,T )× EQ̂

[

max

(
g max

(
P0e

δT ,max
i∈It

Fti ,max
i∈It

Fte
Y

j
t, ti

) n−1∑
s=0

e−(A(T ,T+s)r
j
T

+G̃(T ,T+s)µ
j
T )+D(T ,T+s)+H̃(T ,T+s)

− Fte
Y

j
t, T , 0

)]
.

Compute P
(Base I or II )

GMIB (t) ≈ 1
N

∑N
j=1 P

(I ),j

GMIB(t) and report the standard error.
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V. Numerical illustration V.3 Numerical results

Numerical results: setting and assumptions

N = 200, 000 sample paths were generated in RStudio.

Parallel-simulation technique is executed via machine (i7-10700 CPU @ 2.90
GHz, 16 Cores, 64GB Memory).

Risk factors’ parameters and GMIB contract specification are given in
next slide.

The mortality model parameters are based on Zeddouk and Devolder (2020).

GMIB is based on cohort aged 50 at t = 0. Policyholder is assumed to hold
contract until T = 10 (age 60). Then, they will receive a 20-year term life
annuity-due, with annual payments from age 60 to age 79.
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V. Numerical illustration V.3 Numerical results

Parameter setting assumptions

Table 1: Parameter values

Interest rate model
a = 0.15 θ = 0.045 σ1 = 0.03 r0 = 0.045

Mortality model
c = 0.4496 p = 0.0091 h = 0.0847 σ2 = 0.027 µ0 = 0.0079

Policyholder’s fund
α = 0.01 σ3 = 0.3 F0 = 1

GMIB contract specification
T = 10 δ = 0.03 g = 0.06 n = 20 P0 = 1

Base Benefit I BBT = P0e
δT

Base Benefit II BBT = max (P0e
δT ,F0,F5,FT )
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V. Numerical illustration V.3 Numerical results

Pricing results

Table 2: GMIB value at time t = 0 with Benefit Base I

ρ The MC Benchmark Eq. (8) Our proposed approach Eq. (19)

−0.9 0.14822 (0.00047) 0.14819 (0.00040)

−0.7 0.15594 (0.00050) 0.15635 (0.00042)

−0.5 0.16482 (0.00055) 0.16490 (0.00044)

−0.3 0.17317 (0.00058) 0.17387 (0.00046)

−0.1 0.18346 (0.00064) 0.18325 (0.00048)

0.0 0.18847 (0.00066) 0.18857 (0.00049)

0.2 0.19886 (0.00072) 0.19865 (0.00051)

0.4 0.20858 (0.00078) 0.20921 (0.00053)

0.6 0.22026 (0.00084) 0.22029 (0.00055)

0.8 0.23200 (0.00090) 0.23191 (0.00058)

0.9 0.23702 (0.00093) 0.23793 (0.00059)

Average computing time 331.68 secs 0.25 secs
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V. Numerical illustration V.3 Numerical results

Pricing results

Table 3: GMIB value at time t = 0 with Benefit Base II

ρ The MC Benchmark eq. (8) Our proposed approach eq. (20)

−0.9 0.16917 (0.00052) 0.16882 (0.00045)

−0.7 0.17855 (0.00056) 0.17836 (0.00047)

−0.5 0.18911 (0.00061) 0.18843 (0.00049)

−0.3 0.19864 (0.00066) 0.19905 (0.00051)

−0.1 0.20954 (0.00071) 0.21025 (0.00054)

0.0 0.21655 (0.00074) 0.21623 (0.00055)

0.2 0.22895 (0.00080) 0.22836 (0.00058)

0.4 0.24156 (0.00087) 0.24116 (0.00060)

0.6 0.25451 (0.00094) 0.25465 (0.00063)

0.8 0.26916 (0.00100) 0.26886 (0.00066)

0.9 0.27682 (0.00105) 0.27624 (0.00068)

Average computing time 333.57 secs 0.26 secs
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V. Numerical illustration V.4 Sensitivity analyses

Sensitivity analysis: θ & σ1 for interest rate
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Figure 1: GMIB value at time t = 0 as a function of θ and σ1
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V. Numerical illustration V.4 Sensitivity analyses

Sensitivity analysis: p, h & σ2 for µ
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Figure 2: GMIB value at time t = 0 as a function of p, h and σ2
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V. Numerical illustration V.4 Sensitivity analyses

Sensitivity analysis: investment fund volatility σ3
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Figure 3: GMIB value at t = 0 as a function of σ3
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V. Numerical illustration V.4 Sensitivity analyses

Sensitivity analysis: roll-up δ and g
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Figure 4: GMIB value at time t = 0 as a function of δ and g
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V. Numerical illustration V.4 Sensitivity analyses

Sensitivity analysis: annuity term
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Figure 5: GMIB value at t = 0 as a function of the annuity term n
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V. Numerical illustration V.4 Sensitivity analyses

Sensitivity analysis: contract maturity
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Figure 6: GMIB value at t = 0 across various maturities T
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V. Numerical illustration V.5 Impact of mortality and lapse risks

Impact of mortality risk
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Figure 7: GMIB value with mortality risk versus GMIB value without mortality risk
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V. Numerical illustration V.5 Impact of mortality and lapse risks

Simplified approach to examine lapse risk’s effect

πi := lapsation probability within time period [i − 1, i ], corresponding
to policy year i = 1, 2, . . . , 10.

Upon lapsation, the right to receive guaranteed annuitisation rate at
maturity is forfeited, whilst insurer retains fees earned from providing
GMIB rider.

Fair value of lapse-risk-adjusted GMIB at time t = 0 is:

P∗GMIB(0) = π1 · 0 +
T−1∑
i=1

i∏
j=1

(1− πj)πi+1 · 0

+
T∏
j=1

(1− πj) · EQ
[
e−

∫ T
t rudue−

∫ T
t µudumax(BBTgäx+T :n − FT , 0)

∣∣∣Ft

]

=
T∏
j=1

(1− πj)PGMIB(0),

where PGMIB(0) is GMIB value at t = 0 without lapse risk.
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V. Numerical illustration V.5 Impact of mortality and lapse risks

Impact of lapse risk

Table 4: Lapse-risk-adjusted GMIB value

πi πi ≡ 2% ∀ i πi ≡ 5% ∀ i

P∗
GMIB

(0)

PGMIB(0) 81.71 % 59.87 %

πi πi = 5%, i = 1, . . . , 5; πi = 2%, i = 6, . . . , 10

P∗
GMIB

(0)

PGMIB(0) 69.94 %

Magnitude of GMIB-value decline depends on lapse probability assump-
tions.

In each scenario, GMIB value is sensitive to lapse risk’s fluctuations.

Robust methodologies are needed for assessing and managing lapse risk
for reserve/capital-level adequacy.
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VI. Real-world measure→ risk-neutral measure (if time permits!)

Processes under measure P

This connects outcomes obtained under Q framework and those
under P setting, where empirical data are utilised for model cali-
bration.

Assume P-dynamics of rt , µt and St are given by

drt = a∗(θ∗1(t)− rt)dt + σ1dW
1,P
t ,

dµt = c∗(ξ∗1(t)− µt)dt + σ2

(
ρdW 1,P

t +
√

1− ρ2dW 2,P
t

)
,

dSt = utStdt + σ3StdW
3,P
t ,

where a∗, σ1, c∗, σ2 and σ3 are positive constants, W 1,P
t , W 2,P

t

and W 3,P
t are independent standard P-BMs.
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VI. Real-world measure→ risk-neutral measure (if time permits!)

Girsanov density: Link from P to Q

Following Dahl & Moller (2006), we construct a likelihood ΛP
t :

dΛt = −Λt

[
fr (t)dW 1,P

t + fµ(t)dW 2,P
t + fS(t)dW 3,P

t

]
, Λ0 = 1,

fr (t) =
c1θ
∗
2(t) + c2rt
σ1

, fS(t) =
ut − rt
σ2

fµ(t) =
c3σ1ξ

∗
2(t)− c1σ2ρθ

∗
2(t)− c2σ2ρrt + c4σ1µt

σ1σ2

√
1− ρ2

,

where c1, c2, c3 and c4 are constants with c1 < 0, c2 > −a∗,
c3 < 0 and c4 > −c∗.
Consequently, dW 1,Q

t = dW 1,P
t + fr (t)dt, dW 2,Q

t = dW 2,P
t +

fµ(t)dt, dW 3,Q
t = dW 3,P

t + fS(t)dt.

Also, a = a∗ + c2, θ(t) =
a∗θ∗1 (t)−c1θ

∗
2 (t)

a∗+c2
, c = c∗ + c4, ξ(t) =

c∗ξ∗1 (t)−c3ξ
∗
2 (t)

c∗+c4
.
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VII. Conclusion

Concluding remarks

New stochastic modelling framework GMIB valuation: dependence
structure between interest & mortality rates and examination of
lapse risk effect.

Change of numéraire technique to obtain quasi closed-form GMIB
valuation formula.

Numerical experiments: Proposed approach versus MC simulation
(benchmark).

Superior accuracy and efficiency of our proposed approach over
benchmark.

Sensitivity analyses: impact of individual parameters on GMIB value
−→ insights to insurers & regulators.
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VII. Conclusion
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