Excess Verdicts Insurance

Pietro Millossovich joint work with Ziwei Chen

PRIN meeting 2025 - Diamante

Contents

Introduction and Background

2 Problem Definition

Simulation Study

Introduction to Excess Verdicts

- Excess Verdicts (EVs) aka "nuclear verdicts": court-awarded damages far exceeding policy limits, often in cases like wrongful death or personal injury
- Unlike operational risks, EVs stem from unpredictable legal decisions, showing the limits of traditional risk models
- Evolving Legal Factors: bad faith and negligence can impact jury and judge decisions, increasing uncertainty and legal risks for insurers
- EVs lead to unexpected financial pressures, high legal costs for both policyholders and insurers, and compensation delays for injury party

Contribution

• Study a multi-environment optimal insurance problem

 optimal contract is layer-type (deductible and upper limit) in each environment

deductible is environment independent

Application: ex-ante agreement in case of EV

Ex Ante Agreements and Predictive Mechanisms

Ex Ante Agreements:

Defines insurer and policyholder responsibilities in advance to reduce disputes and clarify financial distribution in excess verdict cases.

Stage 1: Policy Limit Check

- **Trigger:** Court-awarded damages exceed policy limits.
- Action: Initiates Stage 2 review.

Ex Ante Agreements and Predictive Mechanisms

Stage 2: Insurer Conduct Review

- Trigger: Review of insurer's actions for good or bad faith.
- Good Faith: Insurer acts fairly and thoroughly, aiming to settle within limits.
- Bad Faith: Unreasonable actions like delaying claims or unfairly rejecting settlements.
- Outcome: Financial responsibility is allocated based on the insurer's conduct.

Comparing Buyer and Seller Payments in EV Contracts

Contract Payments With vs. Without Environment-Contingent Provisions

- Goal: Compare payments under contracts with and without environment-contingent provisions under EVs
- Scenarios:
 - ► **Y=1**: Damages within policy limits (no excess)
 - ▶ **Y=2:** Damages exceed limits, no insurer bad faith
 - Y=3: Excess verdict with insurer bad faith

Comparing Buyer and Seller Payments in EV Contracts

Scenario	Party	Without Provisions	With Provisions
Y=1	Buyer Seller	$\hat{R}(X)$ $\hat{I}(X)$	$R_1(X)$ $I_1(X)$
Y=2	Buyer Seller	$\hat{R}(L) + (X - L)$ $\hat{I}(L)$	$R_2(L) + (X - L)$ $I_2(L)$
Y=3	Buyer Seller	$\hat{R}^c(X)$ $\hat{I}^c(X)$	$R_3(\tilde{L}) + (X - \tilde{L})_+$ $I_3(X) = X - R_3(\tilde{L}) - (X - \tilde{L})_+$

Multiple Indemnity Environments

Problem Setting

- **Setup:** one-period economy and risk sharing between buyer and seller; risk $X \ge 0$
- **Risk Environments:** exogenous environment Y partitions the sample space into m+1 disjoint subsets; if Y=k, buyer transfers $I_k(X)$ to seller, retains $R_k(X)=X-I_k(X)$
- Admissible profiles:

$$\mathcal{I}:=\{\mathbf{I}=(I_1,\ldots,I_m): 0\leq I_k\leq \mathrm{Id}, \\ I_k \text{ and } R_k \text{ non-decreasing for all } k=1,\ldots,m\}.$$

Multiple Indemnity Environments

Problem Setting

• Premium paid to seller: Wang's premium principle, g (nondecreasing, concave) distortion function, $Z \ge 0$ risk

$$P_g(Z) = \int_0^\infty g(S_Z(z)) dz$$

• Buyer's Risk Positions: $\rho \ge 0$ loading rate

$$\mathbf{B}(\mathbf{I}) := \sum_{k=1}^{m} R_k(X) 1_{\{Y=k\}} + (1+\rho) P_g \left(\sum_{k=1}^{m} I_k(X) 1_{\{Y=k\}} \right)$$

Multiple Indemnity Environments (cont'd)

Problem Setting

• Buyer's Risk Measure: φ translation invariant, monotonic

$$F_{\varphi}(\mathbf{I}) = \varphi(\mathbf{B}(\mathbf{I}))$$

$$= \varphi\left(\sum_{k=1}^{m} R_{k}(X)\mathbf{1}_{\{Y=k\}}\right) + (1+\rho)P_{g}\left(\sum_{k=1}^{m} I_{k}(X)\mathbf{1}_{\{Y=k\}}\right)$$

Buyer's problem

$$\inf_{\mathbf{I}\in\mathcal{I}}F_{\varphi}\left(\mathbf{I}\right)$$

solution to this problem is Pareto efficient!

Multiple Indemnity Environments (cont'd)

Problem Setting

• Subset of admissible indemnity profiles:

$$\mathcal{I}^* = \left\{ \mathbf{I} \in \mathcal{I} : \text{ for each } k = 1, \dots, m, \right.$$

$$I_k(x) = \left(x - d_k \right)_+ - \left(x - I_k \right)_+ \text{ for some } d_k \le I_k \right\}$$

Each indemnity profile in \mathcal{I}^* features layer-type transfers where, in any exogenous environment, the indemnity is full insurance beyond a deductible d_k and up to an upper limit l_k

Main Theorem

Main Theorem

Let $\varphi=\mathsf{VaR}_\alpha$ or $\varphi=\mathsf{CVaR}_\alpha.$ For any $\rho\geq 0$ and $\mathbf{I}\in\mathcal{I}$, there exists $\tilde{\mathbf{I}}\in\mathcal{I}^*$ st

$$F_{\varphi}(\tilde{\mathbf{I}}) \leq F_{\varphi}(\mathbf{I})$$

Corollary (1)

 $\tilde{\mathbf{I}}=(\tilde{I}_1,\ldots,\tilde{I}_m)$ can be chosen so that the deductible in each environment coincide

$$d_1 = \cdots = d_k = d$$

Corollary (2)

$$F_{\varphi}(\tilde{\mathbf{I}}) < F_{\varphi}(\mathbf{I}) \text{ if } \mathbf{I} \notin \mathcal{I}^*$$

Extension

Main Theorem

The Theorem still holds if the buyer's risk position is

$$\mathbf{B}(\mathbf{I}) := \sum_{k=1}^{m} R_{k}(X) 1_{\{Y=k\}} + \sum_{k=1}^{m} P_{g_{k}} \left(I_{k}(X) 1_{\{Y=k\}} \right)$$

a different distortion function in each environment to obtain the premium Special case of interest is the **proportional hazard transform (PH)**: $\sigma(z) = \sigma^{\beta_k} \quad 0 < \beta_k < 1$

$$g_k(z)=z^{\beta_k}$$
, $0<\beta_k\leq 1$

Simulation Study

Setting

• m=3 risk environments; $(X|Y=k) \sim$ type II Pareto for all k

k	$\mathbb{P}\left(Y=k\right)$	λ	α	$\mathbb{E}[X Y=k]$	SD[X Y=k]
1	60%	40	5	10	12.91
2	30%	200	3	100	173.21
3	10%	1,500	2.5	1,000	2236.07

- Risk increases from scenario 1 to 3; scenario $3 \equiv \text{excess verdicts}$
- Use $\varphi = \text{CVaR}_{95\%}$. To adjust premiums for large losses, we use the proportional hazard transform with distortion function $g(z) = z^{\beta_k}$

Simulation Results (1/3)

	Risk environment Y_1		Risk environment Y_2		Risk environment Y_3	
β_1	$F_X(d)$	$S_X(I_1)$	$F_X(d)$	$S_X(I_2)$	$F_X(d)$	$S_X(I_3)$
0.45	93.13%	0.72%	32.80%	0.43%	4.57%	4.31%
0.55	89.44%	0.21%	27.58%	0.43%	3.69%	4.31%
0.65	85.40%	0.03%	23.60%	0.43%	3.06%	4.31%
0.75	81.19%	0.00%	20.48%	0.43%	2.60%	4.31%
0.85	76.93%	0.00%	17.95%	0.43%	2.24%	4.31%
0.95	72.71%	0.00%	15.87%	0.43%	1.95%	4.31%

Table: CDF at the deductible and survival function at the upper limit, conditional on each scenario, for different values of β_1 .

Simulation Results (3/3)

	Risk environment Y_1		Risk environment Y_2		Risk environment Y_3	
eta_2	$F_X(d)$	$S_X(I_1)$	$F_X(d)$	$S_X(I_2)$	$F_X(d)$	$S_X(I_3)$
0.45	90.69%	0.032%	29.12%	1.44%	3.94%	4.31%
0.55	85.40%	0.032%	23.60%	0.43%	3.06%	4.31%
0.65	79.93%	0.032%	19.67%	0.06%	2.48%	4.31%
0.75	74.51%	0.032%	16.72%	0.00%	2.07%	4.31%
0.85	69.28%	0.000%	14.41%	0.00%	1.75%	4.31%
0.95	64.32%	0.000%	12.57%	0.00%	1.51%	4.31%

Table: CDF at the deductible and survival function at the upper limit, conditional on each scenario, for different values of β_2 .

Simulation Results (3/3)

	Risk environment Y_1		Risk environment Y_2		Risk environment Y_3	
β_3	$F_X(d)$	$S_X(I_1)$	$F_X(d)$	$S_X(I_2)$	$F_X(d)$	$S_X(I_3)$
0.45	85.40%	0.032%	23.60%	0.43%	3.06%	4.31%
0.55	78.72%	0.032%	18.95%	0.43%	2.38%	1.28%
0.65	72.53%	0.000%	15.80%	0.43%	1.94%	0.19%
0.75	67.09%	0.000%	13.56%	0.43%	1.64%	0.006%
0.85	62.45%	0.000%	11.94%	0.43%	1.43%	0.00002%
0.95	58.57%	0.000%	10.73%	0.43%	1.27%	0.00%

Table: CDF at the deductible and survival function at the upper limit, conditional on each scenario, for different values of β_3 .

Thank you for your attention!